Задачи про бассейн егэ

Задачи про бассейн егэ

Первый и второй насосы наполняют бассейн за 9 минут, второй и третий — за 14 минут, а первый и третий — за 18 минут. За сколько минут эти три насоса заполнят бассейн, работая вместе?

Наименьшее общее кратное чисел 9, 14 и 18 равно 126. За 126 минут первый и второй, второй и третий, первый и третий насосы (каждый учтен дважды) заполнят 14 + 9 + 7 = 30 бассейнов. Следовательно, работая одновременно, первый, второй и третий насосы заполняют 15 бассейнов за 126 минут, а значит, 1 бассейн за 8,4 минуты.

Приведём другое решение.

За одну минуту первый и второй насосы заполнят 1/9 бассейна, второй и третий — 1/14 бассейна, а первый и третий — 1/18 бассейна. Работая вместе, за одну минуту два первых, два вторых и два третьих насоса заполнят

бассейна.

Тем самым, они могли бы заполнить бассейн за 21/5 минуты или за 4,2 минуты. Поскольку каждый из насосов был учтен два раза, в реальности первый, второй и третий насосы, работая вместе, могут заполнить бассейн за 8,4 минуты.

Приведем алгебраическое решение Тимура Алиева.

Пусть x — производительность первого насоса, y — производительность второго насоса, z — производительность третьего насоса. Тогда

Сложив уравнения, получим

Тогда при совместной работе всех трех насосов время заполнения бассейна составит минуты.

Источник

Задачи на работу в ЕГЭ 2019. Примеры с решением

Еще одним классическим примером текстовых задач, которые могут встретиться в 11 задании профильного ЕГЭ, — это задачи на работу. Это всевозможные задачи про рабочих, которые делают детали, про трубы, которые наполняют бассейны, а также про совместную работу.

Научиться решать такие задачи довольно просто, главное – выучить одну единственную формулу, знать основные правила решения задач этого типа и следовать трем простым шагам.

Формула, которую обязан знать каждый

Формула, без которой не получится решить не одну задачу на работу:Работа – это, по сути, объем выполненной работы, например, количество изготовленных деталей или количество построенных домов.

Время – это время, за которое выполняется заданный объем работы.

Производительность – это, по сути, скорость выполнения заданного объема работы за определенное время. Например, рабочий делает 10 деталей в час – это и есть его производительность.

Из данной формулы нужно уметь выражать производительность и время:

Как решать задачи на работу: основные правила

При решении задач на работу нужно знать следующие правила:

  1. Если работу выполняют двое рабочих, то их производительности складываются
  2. Если объем работы в задаче не задан и нет данных, позволяющих его найти, и при этом объем работы не важен для решения задачи, то работа принимается за единицу.
  3. За переменную Х, как правило, удобнее всего брать производительность

Решение задачи на работу: 3 простых шага

Решение задачи на работу сводится к трем шагам:

  1. Задаем переменную Х и составляем таблицу
  2. Составляем уравнение на основании таблицы и условий задачи, решаем его
  3. Возвращаемся к условиям задачи, вспоминаем, что требовалось найти и находим ответ

Не забывайте про третий шаг, так как часто ученики, верно решив уравнение, сразу записывают ответ к задаче, забывая о том, что требовалось найти по условиям задачи. И по сути правильная решенная задача не получает заслуженного балла.

Примеры решения задач на работу: от простого к сложному

Задача 1

Первый рабочий выполняет заказ из 120 деталей на 2 часа быстрее, чем второй. Также известно, что первый рабочий делает на 3 детали в час больше, чем второй. Сколько деталей в час изготавливает первый рабочий?

1. Составим таблицу на основании условий задачи. Производительность первого рабочего примем за Х. Тогда производительность второго рабочего будет х — 3, так как второй рабочий делает на 3 детали в час меньше первого. Время выполнения всей работы получаем путем деления всей работы на производительность.2. Также из условий задачи нам известно, что всю работу (120 деталей) первый рабочий выполняет быстрее, чем второй на 2 часа. Следовательно, получаем следующее равенство:Решаем полученное уравнение. Для этого приводим все дроби к общему знаменателю:

120 (х- 3) + 2х (х-3) = 120х

120х – 360 + 2х 2 – 6х – 120х =0

2х 2 – 6х – 360 = 0

Делим обе части уравнения на 2:

х 2 – 3х – 180 = 0

3. Возвращаемся к условиям задачи. Нам нужно было найти, сколько деталей изготавливает первый рабочий. Именно эту величину мы обозначали за Х. Х2 нам не подходит по смыслу задачи. Следовательно, первый рабочий изготавливает 15 деталей в час.

Ответ: 15 деталей в час

Задача 2

Первая труба наполняет резервуар объемом 180 литров, а вторая труба наполняет резервуар объемом 120 литра. При этом известно, что одна из труб пропускает на 1 литр воды в минуту меньше, чем другая. Необходимо определить, сколько литров в минуту пропускает первая труба, если резервуары наполняются одновременно.

1. На основании условия задачи составляем таблицу. Производительность первой трубы, то есть сколько воды она пропускает в минуту, обозначим за Х. Тогда производительность второй трубы будет либо на 1 литр в минуту больше, либо на 1 литр в минуту меньше. Это мы можем обозначить, как х ± 1. Время рассчитываем по формуле и заносим в таблицу:

2. Из условий задачи нам известно, что обе трубы выполняют свою работу за одинаковое количество времени. Следовательно, время работы первой и второй трубы мы можем приравнять, тогда получим: Теперь решаем два уравнения:Решаем первое уравнение:

180х – 120х = 180

Решаем второе уравнение:

180х – 120х = -180

3. Возвращаемся к условиям задачи. Нам необходимо было определить, сколько литров в минуту пропускает первая труба. Именно это – производительность первой трубы мы и обозначали за Х. Х2 нам не подходит по смыслу задачи. Следовательно, первая труба пропускает 3 литра в минуту.

Читайте также:  Как заполнить бассейн с фильтром

Ответ: 3 литра в минуту

Задача 3

Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая. Определить сколько литров воды в минуту пропускает первая труба, если известно, что бассейн объемом 300 литров она заполняет на 3 минуты дольше, чем вторая.

1. На основании условий задачи составляем таблицу. Производительность второй трубы обозначим за Х. Тогда производительность первой трубы Х – 5, так как она пропускает на 5 литров воды в минуту меньше. Объем бассейна (это объем работы труб) равен 300 литрам. Время работы труб определяем по формуле и заносим в таблицу:

2. Из условий задачи известно, что первая труба заполняет бассейн на три минуты дольше, чем вторая труба. Следовательно:Решаем полученное уравнение:

300х – 3х (х-5) = 300 (х — 5)

300х – 3х 2 + 15х – 300х + 1500 = 0

-3х 2 + 15х + 1500 = 0

Делим обе части уравнения на -3:

х 2 — 5х — 500 = 0

3. Возвращаемся к условиям задачи. Нам необходимо было найти производительность первой трубы, которую мы обозначили, как (х – 5).

Подставляем полученное значение Х:

Подставляем х1: 25 – 5 = 20

Подставляем х2: -20 – 5 = -25

Второй результат нам не подходит по смыслу задачи. Следовательно, производительность первой трубы равна 20 литров в минуту.

Ответ: 20 литров в минуту.

Примеры решения задачи на совместную работу

Задача 4

Двое рабочих, работая вместе, могут выполнить работу за 15 часов. За сколько часов, работая отдельно, выполнит эту работу первый рабочий, если он за 4 часа выполняет такую же часть работы, какую второй — за 5 часов.

Решение. Способ 1:

1. Составим таблицу на основании условий задачи. Так как общий объем работы нам не дан в задачи, то принимаем его за единицу. Этот объем работы двое рабочих выполняют за 15 часов, следовательно, их производительность труда равна 1/15. Обозначим за Х время, которое потребуется первому рабочему для выполнения всей работы. Тогда его производительность будет равна 1/х. Следовательно, за 4 часа первый рабочий выполнит 4 * 1/х= 4/х части работы. Эту же часть работы 4/х второй рабочий может выполнить за 5 часов, следовательно, его производительность труда равна 4/х / 5 =4/5х. Заносим полученные данные в таблицу:

2. Итак, мы получили, что производительность труда первого рабочего 1/х, производительность второго рабочего 4/5х. А их общая производительность при совместной работе складывается и при этом равна 1/15:Решаем полученное уравнение. Для этого умножаем каждый член уравнения на 15х и получаем:

3. Возвращаемся к условиям задачи. Нам нужно определить, за какое время выполнит всю работу первый рабочий. Именно это мы и обозначали за Х. Следовательно, первый рабочий выполнит всю работу, работая один, за 27 часов.

Теперь разберем, как эту же задачу можно решить с помощью системы уравнений.

Решение. Способ 2:

1. Составим таблицу на основании условий задачи. Обозначим производительность труда первого рабочего за х1, а производительность второго рабочего – за х2. Следовательно, их общая производительность равна х1 + х2. А их общая работа, выполненная за 15 часов, равна 15 (х1 + х2) = 1.

Также по условию задачи известно, что одинаковое количество работы первый работник выполняет за 4 часа (т.е. его работа равна 4х1), а второй работник за 5 часов (т.е. его работа равна 5х2). Таким образом:

1 = 5х2

2. Сведем в систему уравнений, полученные в первом пункте уравнения:Из второго уравнения выразим х1 = 5х2 / 4 и подставим в первое уравнение:

Умножаем обе части уравнения на 4:

3. Возвращаемся к условию задачи. Нам нужно определить, за какое время выполнит всю работу первый рабочий. Производительность труда первого рабочего мы обозначали за х1. Вся работа равна 1. Следовательно, время первого рабочего равно 1/ х1. Таким образом, время, за которое выполнит всю работу первый рабочий:Ответ: 27 часов.

Таким образом, мы решили задачу на совместную работу двумя способами: с помощью уравнения и с помощью системы уравнений. Выбирайте тот, который вам понятнее.

Надеюсь, мы достаточно подробно разобрали, как решать задачи на работу и теперь вы легко с ними справитесь.

Источник

Задачи «на бассейны» и другие

Этот раздел начинается знакомыми задачами. Новое в их решении заключается в том, что теперь вместо рассуждений типа «Бассейн можно наполнить за 3 ч, значит, в каждый час наполняется 1 /3 бассейна» или «В каждый час наполняется 1 /2 бассейна, значит, бассейн можно наполнить за 2 ч» учащиеся будут писать действия: 1:3 = 1 /3 и 1: 1 /2 = 2. При этом каждый раз предполагается и устно оговаривается, что объем бассейна (расстояние, выполненная работа и т. п.) принимается за единицу. Отметим, что без такого перехода к делению учащимся будет сложно решать задачи с дробными ответами (№№ 207, 211 и др.).

201. 1) Через первую трубу бассейн можно наполнить за 3 ч,
через вторую за 6 ч. Какую часть бассейна наполнит каждая труба за 1 ч?

2) За 1 ч первая труба наполняет 1/3 бассейна, а вторая — 1 /6 бассейна. Какую часть бассейна наполняют обе трубы за 1 ч совместной работы? За сколько часов наполнится бассейн через обе трубы?

3) Через первую трубу можно наполнить бак за 10 мин, через вторую — за 15 мин. За сколько минут можно наполнить бак через обе трубы?

202. Старинная задача. Путешественник идет из одного города в другой 10 дней, а другой путешественник тот же путь проходит за 15 дней. Через сколько дней встретятся путешественники, если выйдут одновременно навстречу друг другу из этих городов?

Задачи 203 (а–в) составлены с таким расчетом, чтобы показать, что различные по фабуле задачи могут отражать одну и ту же арифметическую ситуацию, могут иметь один и тот же способ решения.

203. а) Через первую трубу бассейн можно наполнить за 20 ч, а через вторую — за 30 ч. За сколько часов наполнится бассейн через обе эти трубы?

б) Один ученик может убрать класс за 20 мин, а второй — за 30 мин. За сколько минут они могут убрать класс, работая вместе?

в) Грузовая машина может проехать расстояние между двумя городами за 30 ч, а легковая — за 20 ч. Машины одновременно выехали из этих городов навстречу друг другу. Через сколько часов они встретятся?

Читайте также:  Можно ли известью чистить пруд

204. На птицеферму привезли корм, которого хватило бы уткам на 30 дней, а гусям — на 45 дней. Рассчитайте, на сколько дней хватит привезенного корма и уткам, и гусям вместе?

Завершая цепочку задач рассматриваемой серии, приводящих к сложению дробей, можно напомнить учащимся задачу 112 (б). Желательно обратить внимание учащихся на то, что эта задача уже была ими решена (№ 201 (3)). При этом объем бака не учитывался. Это означает, что задача 112 (б) содержит лишнее условие — объем бака. Учащимся нужно предоставить возможность убедиться в том, что от замены числа 600 на 300 или любое другое число ответ не меняется. Здесь, конечно, нужна оговорка: Мы предполагаем, что при уменьшении объем бака, например, в 2 раза скорость вытекания воды тоже уменьшается в 2 раза. Решения с различными числовыми данными нужно обсудить устно, записать одно из них с краткими пояснениями на доске и использовать его для сравнения с новым способом решения. Например:

1) 600:10 = 60 (л) — наполнится за 1 мин через I кран;

2) 600:15 = 40 (л) — наполнится за 1 мин через II кран;

3) 60 + 40 = 100 (л) — наполнится за 1 мин через оба крана;

4) 600:100 = 6 (мин) — наполнится бак через оба крана.

Разумеется, несколько случайных проб, в результате которых получен ответ «6 минут», еще не доказывают утверждения
«В этой задаче ответ не зависит от объема бака». Для его доказательства учитель может прибегнуть к помощи букв. После решения 2–3 задач с различными числовыми данными можно привести аналогичное решение с буквой. При этом буква выступает не как переменная (что далеко от опыта ребенка данного возраста), а как неизвестное число.

Пусть объем бака x л, тогда

1) x:10 = x /10 (л) — наполнится за 1 мин через I кран;

Здесь нужно подчеркнуть, что вместо числа x можно было взять число 300, 200 или любое другое число — в каждом случае в последнем действии дробь сократится на это число. Значит, ответ не зависит от выбора числа x.

205. а) Заготовленных материалов хватит для работы двух цехов в течение 10 дней, или одного первого цеха — в течение 15 дней. На сколько дней хватило бы этих материалов для работы одного второго цеха?

б) Два тракториста вспахали поле за 6 ч совместной работы. Первый тракторист мог бы один вспахать то же поле за 10 ч. За сколько часов второй тракторист мог бы вспахать это поле?

206. Из «Арифметики» Л.Ф. Магницкого. Один человек выпьет кадь пития в 14 дней, а с женою выпьет ту же кадь в 10 дней. Спрашивается, в сколько дней жена его отдельно выпьет ту же кадь.

Учащимся можно показать старинное решение задачи:

За 140 дней человек выпьет 10 бочонков, а вместе с женой за 140 дней они выпьют 14 бочонков. Значит, за 140 дней жена выпьет 4 – 10 = 4 бочонка. Один бочонок она выпьет за 140:4 = 35 дней.

Разумеется, для решения этой задачи было бы проще взять 70, а не 140 дней.

207.* Старинная задача. (Китай, II в.) Дикая утка от южного моря до северного моря летит 7 дней. Дикий гусь от северного моря до южного моря летит 9 дней. Теперь дикая утка и дикий гусь вылетают одновременно. Через сколько дней они встретятся?

Условие задачи 208 провоцирует «сбой» — решение по шаблону в ситуации, когда никакой совместной работы не происходит.

208.* Одна бригада может выполнить задание за 9 дней, а вторая — за 12 дней. Первая бригада работала над выполнением этого задания 3 дня, потом вторая бригада закончила работу. За сколько дней было выполнено задание?

Решение задачи можно оформить так:

1) 1:9 = 1 /9 (задания) — выполнит I бригада за 1 день;

2) 1 /9·3 = 1 /3 (задания) — выполнила I бригада за 3 дня;

3) 1 – 1 /3= 2 /3 (задания) — выполнила II бригада;

4) 1:12 = 1 /12 (задания) — выполнит II бригада за 1 день;

6) 3 + 8 = 11 (дней) — затрачено на выполнение задания.

Два первых действия можно заменить одним (3:9 = 1 /3), определив, какую часть работы выполнит I бригада за 3 дня.

209.* Из пунктов А и В одновременно навстречу друг другу вышли два пешехода. Они встретились через 40 мин после выхода, а через 32 мин после встречи первый пришел в В. Через сколько часов после выхода из В второй пришел в А?

210.* Из пункта А в пункт В выехала грузовая машина. Одновременно с ней из пункта В в А выехала легковая машина. Грузовая машина через 2 ч после начала движения встретила легковую и еще через 3 ч прибыла в пункт В. Сколько времени потратила легковая машина на путь из В в А?

211.* Старинная задача. (Армения, VII в.). В городе Афинах был водоем, в который проведены три трубы. Одна из труб может наполнить водоем за 1 ч, другая, более тонкая, — за 2 ч, третья, еще более тонкая, — за 3 ч. Итак, узнай, в какую часть часа все три трубы вместе наполняют водоем.

Обратите внимание на то, что задачи 22 (а, б) полностью воспроизводят арифметическую ситуацию предыдущей задачи — те же числовые данные, но иной сюжет и вопрос.

212.* Старинные задачи. а) Лошадь съедает воз сена за месяц, коза — за два месяца, овца — за три месяца. За какое время лошадь, коза и овца вместе съедят такой же воз сена?

б) Лев съел овцу за один час, волк съел овцу за два часа, а пес съел овцу за три часа. Спрашивается, как скоро они втроем съели бы овцу.

Заметим, что старинное решение задачи 212 (б), приведенное в математической рукописи, основано на предположении, что лев, волк и пес едят овец в течение 12 часов. [10, с. 45] Тот же прием использует автор рукописи для решения следующей задачи.

213.* Старинная задача. Четыре плотника хотят построить дом. Первый плотник может построить дом за 1 год, второй — за 2 года, третий — за 3 года, четвертый — за 4 года. Спрашивается, за сколько лет они построят дом при совместной работе.

Читайте также:  Сифилис может передаваться через бассейн

В 12 лет каждый плотник в отдельности сумеет построить: первый 12 дворов, второй — 6 дворов, третий — 4, четвертый — 3. Таким образом, за 12 лет они могут построить 25 дворов. Следовательно, один двор все вместе они сумеют построить за 365·12 /25 = 175 дней.

Приведенные способы решения задач стоит показать детям для того, чтобы подчеркнуть важную мысль: авторы решений применяли такие нереалистичные, хоть и остроумные, рассуждения, видимо, потому, что не умели действовать с дробями.

214.* Из «Всеобщей арифметики» И. Ньютона. Трое рабочих могут выполнить некоторую работу, при этом А может выполнить ее один раз за 3 недели, B три раза за 8 недель, C пять раз за 12 недель. Спрашивается, в какое время они смогут выполнить эту работу все вместе. (Считать в неделе 6 рабочих дней по 12 ч).

Более сложным продолжением рассматриваемой серии задач являются задачи на движение по реке.

215.* Катер проплывает некоторое расстояние по озеру за 6 ч, а по течению реки — за 5 ч. Сколько времени потребуется плоту на такое же расстояние?

Покажем решение первой задачи из этой серии. Примем все расстояние за 1, тогда за 1 ч катер проходит по течению 1 /5, а по озеру 1 /6 всего расстояния; по течению на 1 /5 – 1 /6 = 1 /30 расстояния больше — это и есть часть расстояния, на которую в час течение сносит все предметы. Значит, то же расстояние плот проплывет за 30 ч. Без пояснений решение можно записать так:

Труднее всего здесь объяснить результат третьего действия. Объяснение можно упростить, введя букву.

Пусть х км — данное расстояние, тогда

1) x:5 = x /5 (км/ч) — скорость катера по течению;

216.* Расстояние между двумя пристанями по течению катер проходит за 8 ч, а плот — за 72 ч. Сколько времени потратит катер на такой же путь по озеру?

217.* Лодка проплыла некоторое расстояние по озеру за 4 ч. Такое же расстояние плот проплывает по реке за 12 ч. Сколько времени затратит лодка на тот же путь по течению реки? против течения?

218.* а) Моторная лодка проходит расстояние между двумя пунктами А и В по течению реки за 2 ч, а плот — за 8 ч. Какое время затратит моторная лодка на обратный путь?

б) Плот плывет от А до В 40 ч, а катер — 4 ч. Сколько часов катер плывет от В до А?

219.* а) Теплоход от Киева до Херсона идет трое суток, а от Херсона до Киева четверо суток (без остановок). Сколько времени будут плыть плоты от Киева до Херсона?

б) Из Нижнего Новгорода в Астрахань теплоход плывет 5 суток, а обратно 7 суток. За сколько суток из Нижнего Новгорода в Астрахань приплывут плоты?

в) Расстояние между двумя пунктами пароход проходит вниз по течению реки за 2 ч, а вверх по течению — за 3 ч. За сколько часов между теми же пунктами проплывет бревно?

Рассмотрим решение задачи 219 (а). Пароход в сутки проходит по течению реки 1:3 = 1 /3 пути, а против течения 1:4 = 1 /4 пути. Вычтем 1 /4 из 1 /3, получим 1 /12, но это еще не «скорость течения» — полученный результат надо поделить на 2. Плоты за сутки проходят 1 /24 пути, значит, весь путь пройдут за 1: 1 /24 = 24 дня.

Эту задачу, как и большинство задач данной серии, можно решить, обозначая буквой все расстояние (работу и т. п.). Такой алгебраический прием не приводит к уравнению, но позволяет проще объяснить отдельные шаги решения.

Пусть x км — расстояние от Киева до Херсона, тогда скорость парохода по течению x /3 км/сут., против течения x /4 км/сут.

220.* 1) Первая и вторая бригады могли бы выполнить задание за 9 дней; вторая и третья бригады — за 18 дней; первая и третья бригады — за 12 дней. За сколько дней это задание могут выполнить три бригады, работая вместе?

2) В бассейн проведены три трубы. Через первые две трубы бассейн наполняется за 1 ч 10 мин; через первую и третью трубы он наполняется за 1 ч 24 мин; а через вторую и третью за 2 ч 20 мин. За сколько минут наполнится бассейн через все три трубы?

3) По условию задачи 220 (1) определите, за сколько дней третья бригада сможет выполнить то же задание, работая отдельно?

Приведем решение задачи 220 (1):

1) 1:9 = 1 /9 (задания) — выполняют I и II бригады за 1 день;

2) 1:18 = 1 /18 (задания) — выполняют II и III бригады за 1 день;

3) 1:12 = 1 /12 (задания) — выполняют I и III бригады за 1 день;

4) ( 1 /9 + 1 /18 + 1 /12):2 = 1 /8 (задания) — выполняют три бригады за 1 день совместной работы;

5) 1: 1 /8 = 8 (дней) — время выполнения задания тремя бригадами.

221.* 1) За 1 ч прогулочный катер может проплыть 10 км против течения или 15 км по течению реки. На какое наибольшее расстояние он может удалиться от пристани и вернуться обратно во время часовой прогулки?

2) Швейный цех выпускает за смену 300 джинсовых курток или 600 джинсовых брюк. Сколько джинсовых костюмов, состоящих из куртки и брюк, может выпустить швейный цех за смену?

Рассмотрим решение задачи 221 (1). На 1 км по течению и 1 км против течения катер тратит 1 /10 + 1 /15 = 1 /6 ч. Тогда за 1 ч катер может удалиться от пристани на 1: 1 /6 = 6 км и вернуться обратно.

Задачу 221 (2) можно решить двумя способами.

I способ. На одну куртку тратится 1 /300, а на одни брюки 1 /600 смены, т. е. на один костюм тратится 1 /300 + 1 /600 = 1 /200 смены, поэтому за смену швейный цех выпустит 1: 1 /200 = 200 костюмов.

II способ. По условию задачи, на одну куртку тратится вдвое больше времени, чем на одни брюки, следовательно, вместо 100 курток цех может пошить 200 брюк. Тогда за смену цех выпустит 300 курток или 200 курток и 200 брюк, то есть 200 костюмов.

Источник

Оцените статью