Задача две трубы заполняют бассейн
Первая труба заполняет бассейн за 7 часов, а две трубы вместе — за 5 часов 50 минут. За сколько часов заполняет бассейн одна вторая труба?
Первая труба заполняет бассейн за 7 часов, две трубы вместе — за за 5 часов 50 минут то есть за 35/6 часа. Это значит, что за час первая труба заполняет 1/7 бассейна, а две трубы — 6/35 бассейна. При совместной работе производительности складываются, поэтому производительность второй трубы равна разности общей производительности и производительности первой трубы: бассейна в час. Тем самым, вторая труба заполняет бассейн за 35 часов.
То же самое решение составлением уравнения.
Поскольку первая труба заполняет бассейн за 7 часов, она заполняет одну седьмую бассейна в час. Пусть x — время, за которое вторая труба заполняет бассейн, в час она заполнит 1/х часть бассейна. Известно, что две трубы, работая одновременно, заполнили бассейн за 35/6 часа. Значит, в час они заполняли 6/35 бассейна. Тогда получаем:
Можно даже проще. Найдём время заполнения каждой трубы t, объём выполненной работы V и выполненную работу A (в нашем случае она будет равна 1, так как они заполнили 1 бассейн). Итак, время второй трубы обозначим за x, так как она нам не известна. А первая труба заполняет бассейн за 7 часов. Тогда объём работы 1 трубы будет равен 1/7. Аналогично 2 труба 1/х. Это мы нашли объём выполненной работы каждой трубой по отдельности. Нам известно что 2 трубы вместе выполнили данную работу за 5 часов 50 минут (то есть 5 целых 5/6). Тогда общий объём равен 6/35 (просто переведите 5 целых 5/6 в неправильную дробь и разделите 1 на на неё). Отсюда следует, что:
Источник
Задача две трубы заполняют бассейн
Первая труба наполняет резервуар на 27 минут дольше, чем вторая. Обе трубы наполняют этот же резервуар за 18 минут. За сколько минут наполняет этот резервуар одна вторая труба?
Пусть вторая труба наполняет резервуар за минут, а первая — за
+ 27 минут. В одну минуту они наполняют соответственно
и
часть резервуара. Поскольку обе трубы, работая 18 минут, заполняют весь резервуар, имеем:
Следовательно, вторая труба заполняет заполнит весь резервуар за 27 минут.
Первая труба заполняет бассейн за 7 часов, а две трубы вместе — за 5 часов 50 минут. За сколько часов заполняет бассейн одна вторая труба?
Первая труба заполняет бассейн за 7 часов, две трубы вместе — за за 5 часов 50 минут то есть за 35/6 часа. Это значит, что за час первая труба заполняет 1/7 бассейна, а две трубы — 6/35 бассейна. При совместной работе производительности складываются, поэтому производительность второй трубы равна разности общей производительности и производительности первой трубы: бассейна в час. Тем самым, вторая труба заполняет бассейн за 35 часов.
То же самое решение составлением уравнения.
Поскольку первая труба заполняет бассейн за 7 часов, она заполняет одну седьмую бассейна в час. Пусть x — время, за которое вторая труба заполняет бассейн, в час она заполнит 1/х часть бассейна. Известно, что две трубы, работая одновременно, заполнили бассейн за 35/6 часа. Значит, в час они заполняли 6/35 бассейна. Тогда получаем:
Можно даже проще. Найдём время заполнения каждой трубы t, объём выполненной работы V и выполненную работу A (в нашем случае она будет равна 1, так как они заполнили 1 бассейн). Итак, время второй трубы обозначим за x, так как она нам не известна. А первая труба заполняет бассейн за 7 часов. Тогда объём работы 1 трубы будет равен 1/7. Аналогично 2 труба 1/х. Это мы нашли объём выполненной работы каждой трубой по отдельности. Нам известно что 2 трубы вместе выполнили данную работу за 5 часов 50 минут (то есть 5 целых 5/6). Тогда общий объём равен 6/35 (просто переведите 5 целых 5/6 в неправильную дробь и разделите 1 на на неё). Отсюда следует, что:
Добавили в пояснение.
Первая труба наполняет резервуар на 48 минут дольше, чем вторая. Обе трубы, работая одновременно, наполняют этот же резервуар за 45 минут. За сколько минут наполняет этот резервуар одна вторая труба?
Пусть вторая труба наполняет резервуар за x минут, а первая — за x + 48 минут. В одну минуту они наполняют соответственно и
часть резервуара. Поскольку за 45 минут обе трубы заполняют весь резервуар, получаем:
Заметим, что при положительных x функция, находящаяся в левой части уравнения, убывает. Поэтому очевидное решение уравнения единственно. Решая это уравнение, получим Поскольку вторая труба заполняет
резервуара в минуту, она заполнит весь резервуар за 72 минуты.
Первая труба наполняет резервуар на 90 минут дольше, чем вторая. Обе трубы наполняют этот же резервуар за 24 минуты. За сколько минут наполняет этот резервуар одна вторая труба?
Это задание ещё не решено, приводим решение прототипа.
Первая труба наполняет резервуар на 6 минут дольше, чем вторая. Обе трубы наполняют этот же резервуар за 4 минуты. За сколько минут наполняет этот резервуар одна вторая труба?
Пусть вторая труба наполняет резервуар за x минут, а первая — за x + 6 минут. В одну минуту они наполняют соответственно и
часть резервуара. Поскольку за 4 минуты обе трубы заполняют весь резервуар, за одну минуту они наполняют одну четвертую часть резервуара:
Далее можно решать полученное уравнение. Но можно заметить, что при положительных x функция, находящаяся в левой части уравнения, убывает. Поэтому очевидное решение уравнения — единственно. Поскольку вторая труба заполняет
резервуара в минуту, она заполнит весь резервуар за 6 минут.
Источник
Задача две трубы заполняют бассейн
Две трубы наполняют бассейн за 3 часа 36 минут, а одна первая труба наполняет бассейн за 6 часов. За сколько часов наполняет бассейн одна вторая труба?
Пусть объем бассейна равен 1. Обозначим и
— скорости наполнения бассейна первой и второй трубой, соответственно. Две трубы наполняют бассейн за 3 часа 36 минут:
По условию задачи одна первая труба наполняет бассейн за 6 часов, то есть Таким образом,
Тем самым, вторая труба за час наполняет 1/9 бассейна, значит, вторая труба наполняет этот бассейн за 9 часов.
Приведем другое решение.
Первая труба за час наполняет 1/6 бассейна, значит, за 3 ч 36 мин = 3,6 часа она заполнит 0,6 бассейна. Следовательно, вторая труба за 3,6 часа заполнит 0,4 бассейна. Поэтому весь бассейн она заполнит за время 3,6:0,4 = 9 часов.
Источник
Задача две трубы заполняют бассейн
Две трубы наполняют бассейн за 2 часа 56 минут, а одна первая труба наполняет бассейн за 11 часов. За сколько часов наполняет бассейн одна вторая труба?
Это задание ещё не решено, приводим решение прототипа.
Две трубы наполняют бассейн за 3 часа 36 минут, а одна первая труба наполняет бассейн за 6 часов. За сколько часов наполняет бассейн одна вторая труба?
Пусть объем бассейна равен 1. Обозначим и
— скорости наполнения бассейна первой и второй трубой, соответственно. Две трубы наполняют бассейн за 3 часа 36 минут:
По условию задачи одна первая труба наполняет бассейн за 6 часов, то есть Таким образом,
Тем самым, вторая труба за час наполняет 1/9 бассейна, значит, вторая труба наполняет этот бассейн за 9 часов.
Приведем другое решение.
Первая труба за час наполняет 1/6 бассейна, значит, за 3 ч 36 мин = 3,6 часа она заполнит 0,6 бассейна. Следовательно, вторая труба за 3,6 часа заполнит 0,4 бассейна. Поэтому весь бассейн она заполнит за время 3,6:0,4 = 9 часов.
Источник
Задача две трубы заполняют бассейн
Две трубы наполняют бассейн за 3 часа 36 минут, а одна первая труба наполняет бассейн за 6 часов. За сколько часов наполняет бассейн одна вторая труба?
Пусть объем бассейна равен 1. Обозначим и
— скорости наполнения бассейна первой и второй трубой, соответственно. Две трубы наполняют бассейн за 3 часа 36 минут:
По условию задачи одна первая труба наполняет бассейн за 6 часов, то есть Таким образом,
Тем самым, вторая труба за час наполняет 1/9 бассейна, значит, вторая труба наполняет этот бассейн за 9 часов.
Приведем другое решение.
Первая труба за час наполняет 1/6 бассейна, значит, за 3 ч 36 мин = 3,6 часа она заполнит 0,6 бассейна. Следовательно, вторая труба за 3,6 часа заполнит 0,4 бассейна. Поэтому весь бассейн она заполнит за время 3,6:0,4 = 9 часов.
Источник