За сколько часов заполнится бассейн если открыть обе трубы

Математика по полочкам

Готовимся к экзамену по математике за период обучения на II ступени общего среднего образования

21. Задачи на совместную работу

МАТЕРИАЛ ДЛЯ ПОВТОРЕНИЯ

Задачи на работу

В таких задачах всегда присутствуют одни и те же величины, их три:
— первая величина — это время, за которое выполняется та или иная работа. Обозначают время буквой t.
— вторая величина — объём работы: сколько сделано деталей, налито воды, вспахано полей и так далее. Обозначим объем буквой О.
— третья величина — производительность. По сути, это скорость работы. Обозначим производительность буквой П.

Скорость любой работы, т.е. производительность можно определить, как объём работы, сделанной за какое-то время.
Получим формулу для производительности: П = О : t.

Пример. Токарь делает 5 деталей в час. Сколько деталей он сделает за 7 часов?

Пример. Красная Шапочка и Волк очень любят пирожки. Волк может съесть 24 пирожка за 4 часа, а Красная Шапочка — 35 пирожков за 7 часов. У Волка в корзинке 30 пирожков, а у Красной Шапочки — 20. Кто съест свои пирожки раньше, если они начали есть одновременно?

Задачи на совместную работу

Пример. Одна труба может наполнить бассейн за четыре часа. Вторая — за шесть часов. За какое время заполнится бассейн, если обе трубы включить одновременно?

Так как трубы работают вместе, складывают их производительности.
Для первой трубы, которая заполняет 1 бассейн за 4 часа: П = О:t = 1:4, т.е. за час первая труба заполнит 1/4 бассейна.
Для второй трубы: П = О:t = 1:6, т.е. вторая труба заполнит за час 1/6 бассейна.
Вместе, при совместной работе, трубы заполнят за час: 1/4 + 1/6 = 5/12 — две трубы за 1 час.
Объём работы 1 бассейн. Совместная производительность 5/12 бассейна в час.
t = О:П = 1 : 5/12 = 12/5 = 2,4 (ч.)
Ответ:2,4 часа.

УПРАЖНЕНИЯ

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

3. Два экскаватора роют траншею. Работая отдельно, первый может вырыть траншею за 10 дней, второй — за 16 дней. За сколько дней они выроют траншею, работая совместно?

4. Водоем заполняется первой трубой за 5 ч, а второй трубой за 4 ч. За сколько часов наполнится водоем, если будут одновременно работать две трубы?

5. Две наборщицы должны были набрать по 120 страниц каждая. Вторая наборщица набирала за 1 ч на 5 страниц мень­ше, чем первая, поэтому закончила работу на 2 ч позже. Сколько страниц в час набирала первая наборщица?

Читайте также:  Тент прямоугольной бассейн интекс

6. Две бригады рабочих должны по плану изготовить 240 деталей. Первая бригада работала 6 ч, а вторая — 5 ч. Сколь­ко деталей в час изготавливала каждая бригада, если первая делала на 4 детали в час меньше, чем вторая?

Источник

За сколько часов заполнится бассейн если открыть обе трубы

Первая труба заполняет бассейн за 7 часов, а две трубы вместе — за 5 часов 50 минут. За сколько часов заполняет бассейн одна вторая труба?

Первая труба заполняет бассейн за 7 часов, две трубы вместе — за за 5 часов 50 минут то есть за 35/6 часа. Это значит, что за час первая труба заполняет 1/7 бассейна, а две трубы — 6/35 бассейна. При совместной работе производительности складываются, поэтому производительность второй трубы равна разности общей производительности и производительности первой трубы: бассейна в час. Тем самым, вторая труба заполняет бассейн за 35 часов.

То же самое решение составлением уравнения.

Поскольку первая труба заполняет бассейн за 7 часов, она заполняет одну седьмую бассейна в час. Пусть x — время, за которое вторая труба заполняет бассейн, в час она заполнит 1/х часть бассейна. Известно, что две трубы, работая одновременно, заполнили бассейн за 35/6 часа. Значит, в час они заполняли 6/35 бассейна. Тогда получаем:

Можно даже проще. Найдём время заполнения каждой трубы t, объём выполненной работы V и выполненную работу A (в нашем случае она будет равна 1, так как они заполнили 1 бассейн). Итак, время второй трубы обозначим за x, так как она нам не известна. А первая труба заполняет бассейн за 7 часов. Тогда объём работы 1 трубы будет равен 1/7. Аналогично 2 труба 1/х. Это мы нашли объём выполненной работы каждой трубой по отдельности. Нам известно что 2 трубы вместе выполнили данную работу за 5 часов 50 минут (то есть 5 целых 5/6). Тогда общий объём равен 6/35 (просто переведите 5 целых 5/6 в неправильную дробь и разделите 1 на на неё). Отсюда следует, что:

Источник

Решение текстовых задач на совместную работу. 6-й класс

Разделы: Математика

Класс: 6

  • научить находить способ решения задач с помощью использования опорных задач на совместную работу;
  • научить использовать арифметический способ решения текстовых задач,
  • развивать смекалку и сообразительность, умение ставить вопросы и отвечать на них.

1. Организационный момент.

Учитель: Добрый день, ребята! Самое главное в математике – умение решать текстовые задачи. Эпиграфом к сегодняшнему уроку будут слова Д. Пойа: “Умение решать задачи – практическое искусство, подобное плаванию или катанию на лыжах, или игре на фортепиано…”.

2. Этап подготовки к активному усвоению знаний.

Учитель: У каждого из вас лежат карточки с опорными задачами типа А (задача 1), В (задача 2), С (задача 3). Ученики читают опорные задачи.

Читайте также:  Рандклар жидкий для бассейнов

Задача 1 (тип задачи А). Бассейн наполняется за 10 часов. Какая часть бассейна наполняется за 1 час?

Решение: 1 : 10 = часть бассейна наполнится за 1 час. Ответ: .

Задача 2 (тип задачи В). В каждый час первая труба наполняет бассейн бассейна, а вторая – бассейна. Какую часть бассейна наполняют обе трубы за 1 час совместной работы?

Решение: часть бассейна наполняют обе трубы за 1 час.

Ответ: .

Задача 3 (тип задачи С). В каждый час труба наполняет бассейна. За сколько часов она наполнит бассейн?

Решение: 1: = 6 часов – время для наполнения бассейна. Ответ: 6 часов.

Учитель: Итак, отправляемся в путь. Учитель задает вопросы, а учащиеся отвечают.

  • Сколько минут содержится в половине, в трети, в четверти часа?
  • Работу выполнили за 4 часа. Какую часть работы выполняли в каждый час?
  • Путник проходит в час пути. За сколько часов он пройдет весь путь?
  • Два путника вышли одновременно навстречу друг другу и встретились через 3 часа. На какую часть первоначального расстояния они сближались в каждый час?

3. Этап закрепления знаний.

Учитель: Есть много старинных задач на совместную работу, вот одна из них. Старинная задача из математической рукописи XVII века: “Два плотника рядились двор ставить. И говорит первый:
– Только бы мне одному двор ставить, то я бы поставил в 3 года.
А другой молвил:
– Я бы поставил его в шесть лет.
Оба решили сообща ставить двор. Сколь долга они ставили двор?”

Выслушать мнение ребят по поводу решения старинной задачи, разобрать затруднения, возникшие у ребят, при решении задачи на совместную работу.

Учитель: При совместной работе складывается не время работы, а часть работы, которую делают ее участники.

  1. часть всей работы выполнит первый плотник за 1 год;
  2. часть всей работы выполнит второй плотник за 1 год;
  3. + = часть всей работы выполнит первый и второй плотники за 1 год.
  4. 1 : = 2 (года) время выполнения всей работы сообща.

Вывод: при решении задач на совместную работу вся выполненная работа принимается за 1 – “целое”, а часть работы, выполненная за единицу времени, находится по формуле.

Учитель: Разберем решение двух задач (текст задач на карточках).

Задача 1. В городе есть водоем. Одна из труб может заполнить его за 4 часа, вторая – за 8 часов, а третья – за 24 часа. За сколько времени наполнится водоем, если открыть сразу 3 трубы?

  1. 1: 4 = (водоема) наполнится через 1 трубу за 1 час;
  2. 1 : 8 = (водоема) наполнится через 2 трубу за 1 час;
  3. 1 : 24 = (водоема) наполнится через 3 трубу за 1 час;
  4. (водоема) наполнится через 3 трубы за 1 час;
  5. (часа) время наполнения водоема через 3 трубы.
Читайте также:  Пруд пруди чего нибудь

Ответ: через 3 трубы, работающие одновременно, водоем наполнится за часа.

Задача 2. Два пешехода вышли одновременно из двух поселков навстречу друг другу. Один пешеход может пройти весь путь за 3 часа, а другой – за часа. Через сколько времени они встретятся?

Решение задачи: это тоже задача на “совместную работу”, хотя никто не работает. Но можно считать, что “работа” пешеходов – это прохождение пути. Поэтому весь путь принимается за “единицу” и вычисляется часть пути, пройденная каждым пешеходом.

  1. 1: 3 = (расстояния) проходит 1 пешеход за 1 час;
  2. 1 : (расстояния) проходит 2 пешеход за 1 час;
  3. (расстояния) сближаются оба пешехода за 1 час;
  4. (часа) пешеходы встретятся.

Ответ: через часа.

4. Рейтинговая самостоятельная работа.

Учитель: На карточках условия текстовых задач. Вы можете решить одну из предложенных задач по выбору. Решения задач проверяется через проектор.

1) Задача 1 (3 балла) Мастер делает всю работу за 3 часа, а его ученик – за 6 часов.

а) Какую часть работы делает каждый из них за 1 час?
б) Какую часть работы сделают они вместе за 1 час?
в) За сколько времени сделают они всю работу, если будут работать совместно?

2) Задача 2 (4 балла) Бассейн заполняется через 2 трубы за 3 часа. Если открыть одну первую трубу, то бассейн наполнится за 6 часов. За сколько времени наполнится бассейн через одну вторую трубу?

3) Задача 3 (5 баллов) Чтобы выкачать из цистерны нефть, поставили два насоса различной мощности. Если бы действовали оба насоса, цистерна оказалась бы пуста через 12 минут. Оба действовали в течение 4 минут, после чего работал только второй насос, который через 24 минуты выкачал всю остальную нефть. За сколько минут каждый насос, действуя один, мог бы качать всю нефть?

1) Достаточно ли знаний было, чтобы решить задачи?
2) Какие пробелы в знаниях выявились на уроке?
3) Какое открытие вы сделали для себя?

6. Задание на дом: составить по схемам текст задачи с решением.

  1. Дорофеев Г. В., Петерсон Л. Г. Математика. 5 класс. Часть 2 [Текст]: учебник / Г. В. Дорофеев, Л. Г. Петерсон – М.: Издательство “Ювента”, 2008. – 240 с.
  2. Петерсон Л. Г. Математика. 4 класс. Часть 3 [Текст]: учебник / Л. Г. Петерсон – М.: Издательство “Ювента”, 2005. – с. 59
  3. Шевкин, А. В. Материалы курса “Текстовые задачи в школьном курсе математики” [Текст]: лекции 1-4. / А. В. Шевкин – М.: Педагогический университет “Первое сентября”, 2006. – 88 с.
  4. Шевкин, А. В. Материалы курса “Текстовые задачи в школьном курсе математики” [Текст]: лекции 5-8. / А. В. Шевкин – М.: Педагогический университет “Первое сентября”, 2006. – 80 с.

Источник

Оцените статью