- 1.6. Графический способ вычисления интеграла Мора – способ Верещагина
- Глава 2. Статически неопределимые балки
- 2.1. Общие понятия
- 2. Правило Мора-Верещагина (графический способ вычисления интеграла Мора)
- 2)Вывод формулы способа Верещагина для вычисления интеграла Мора.
- Билет 20
- 1)Главные осевые моменты инерции. Определение их величин и направлений главных осей.
- 2) Кручение стержня прямоугольного поперечного сечения (определение напряжений и перемещений).
- Билет 21
- 1)Определение перемещений при растяжении-сжатии.
- 2) Расчёт на прочность при изгибе. Понятие о расчётном и нормативном коэффициенте запаса.
- Метод Мора. Интеграл Мора
1.6. Графический способ вычисления интеграла Мора – способ Верещагина
Упрощение операции интегрирования основано на том, что эпюры от единичных усилий на прямолинейных участках оказываются линейными. Рассмотрим эту процедуру применительно к участку балки. На рис.1.16 сверху показан участок балки с эпюрой Мробщего вида, а внизу эпюра, представляющая линейную функцию. Преобразуем интеграл Мора
(а)
с учётом этой особенности. Как видно из верхнего чертежа, Мрdx = dω, а из нижнего чертежа имеем. Если кроме того считать, что жёсткостьEIна протяжении участка постоянна, вместо (а) будем иметь
. (б)
Интеграл представляет собой статический момент площади эпюрыМротносительно осиу. Его можно записать иначе
Sy = ω ∙ xc ,
где ω– площадь этой эпюрыМр;
хс– координата центра тяжести эпюрыМр.
Отметив на нижней эпюре соответствующую ординату и обозначив её буквой m, будем иметь
xctg α = m.
В результате подстановки этих выражений в (б) получим
. (в)
Если балка имеет несколько участков по длине, формула Верещагина будет иметь вид
, (1.27)
где ∆ – обобщённое перемещение (либо прогиб υ, либо угол поворота θ);
ωi– площадь эпюры моментов от внешней нагрузки (грузовой эпюры);
mi– ордината единичной эпюры под центром тяжести грузовой эпюры;
n– число участков по длине балки.
При пользовании этой формулой надо уметь вычислять площади и координаты центров тяжести основных фигур: прямоугольника, прямолинейного треугольника и криволинейного треугольника. Минимально необходимые справочные данные приведены в табл.1.1. Процедуру графического вычисления называют «перемножением» эпюр.
В случае, если эпюра Мртоже линейная, операция перемножения обладает свойством коммутативности: безразлично, умножается ли площадь грузовой эпюры на ординату единичной или площадь единичной на ординату грузовой.
Встречающиеся на практике эпюры могут быть, как правило, разбиты на простые фигуры, приведённые в табл.1.1.
Эпюры Мри
Примечание: параболы – квадратные.
В качестве примера рассмотрим уже рассчитанную балку на рис.1.13. Чтобы построить эпюры Мр и , можно не определять опорные реакции: достаточно сосчитать момент на опореВ от нагрузки на консоли, построить эпюру на консоли, а затем соединить прямой линией значение М на опоре В с нулём на опоре А (рис.1.17).
В соответствии с формулой (1.27)
.
Конечно, результат получился такой же, что и при интегрировании по формуле Мора, но с меньшими затратами труда.
Глава 2. Статически неопределимые балки
2.1. Общие понятия
Изложенные в предыдущей главе методы определения перемещений широко применяются в расчётах статически неопределимых балок. Если при проектировании длинных балок (мостов, валов турбин) условия прочности и (или) жёсткости не выполняются, можно увеличить сечение балки, а можно поставить дополнительные опоры в пролёте (рис.2.1,б). Второй путь очень часто оказывается предпочтительным, так как позволяет, не увеличивая вес конструкции, сделать её более жёсткой.
Балка с промежуточными опорами становится статически неопределимой, так как трёх уравнений статики уже недостаточно для определения пяти неизвестных реакций.
Напомним, что простую статически неопределимую систему, образованную из стержней, работающих на растяжение-сжатие, мы рассматривали в разделе 2.5 первой части курса. Дополнительное уравнение для определения продольных сил в стержнях – уравнение совместности деформаций – было получено из рассмотрения схемы деформирования системы. Аналогичным по существу методом рассчитываются статически неопределимые балки.
Степень статической неопределимости определяется числом «лишних» связей. Балка на рис.2.1,б имеет две «лишних» промежуточных опоры – их можно удалить без ущерба для равновесия. Степень статической неопределимости этой балки равна двум.
Источник
2. Правило Мора-Верещагина (графический способ вычисления интеграла Мора)
Кроме метода начальных параметров существует эффективный универсальный метод определения перемещений в балках, рамах и упругих конструкциях произвольной конфигурации – метод Мора. Упругое перемещение (либо прогиб
, либо угол поворота сечения
) определяется по формуле:
, (1.3)
где – изгибающий момент от заданной нагрузки;
– изгибающий момент от единичной силы, приложенной в той точке, в которой определяется перемещение.
Упрощение операций интегрирования возможно для конструкций с прямолинейной осью постоянной жесткости и основано на том, что эпюры от единичных усилий на прямолинейных участках оказываются линейными. Рассматривая эту процедуру применительно к участку балки, преобразуем интеграл Мора с учетом этой особенности. На рис. 1.3 сверху показан участок балки с эпюрой общего вида, а внизу эпюра
, представляющая собой линейную функцию. В результате несложного расчета (подробности смотри в учебнике) установлено, что интеграл произведения двух функций
и
численно равен площади эпюры
, умноженной на величину момента, взятого с эпюры
в сечении, соответствующем центру тяжести эпюры
.
. (1.4)
Если балка имеет несколько участков по длине, формула Верещагина будет иметь вид
, (1.5)
где – площадь эпюры моментов от внешней нагрузки (грузовой эпюры);
– ордината единичной эпюры под центром тяжести грузовой эпюры;
– число участков по длине балки.
При пользовании этой формулой надо уметь вычислять площади и координаты центров тяжести основных фигур: прямоугольника, прямолинейного треугольника и криволинейного треугольника. Минимально необходимые справочные данные приведены в табл. 1.1. Процедуру графического вычисления называют «перемножением» эпюр.
Эпюры и
эпюры ,
тяжести
Эпюры и
эпюры ,
тяжести
Примечания: 1. Все кривые в табл. 1.1 – квадратные параболы. 2. При «перемножении» эпюр одного знака их произведение положительно. 3. При «перемножении» эпюр разных знаков их произведение отрицательно.
В случае, если эпюра тоже линейная, операция перемножения обладает свойством коммутативности: безразлично, умножается ли площадь грузовой эпюры на ординату единичной или площадь единичной на ординату грузовой.
Рассмотрим на примере расчетной схемы, показанной на рис. 1.4, порядок решения задач при определении перемещения с помощью правила Мора-Верещагина. Определим прогиб в точке .
Чтобы построить эпюры и
,можно не определять опорные реакции: достаточно сосчитать момент на опоре
от нагрузки на консоли, построить эпюру на консоли, а затем соединить прямой линией значениеM на опореB с нулем на опореA.
В соответствии с формулой (1.5)
.
Источник
2)Вывод формулы способа Верещагина для вычисления интеграла Мора.
Если стержень состоит из прямых участков с постоянной в пределах каждого участка жесткостью, эпюры от единичных силовых факторов на прямолинейных участках оказываются линейными.
Положим, на участке длиной 1 нужно взять интеграл от произведения двух функцийf1(z)*f2(z):J =f1 (z) f2(z) dz (1)
при условии, что хотя бы одна из этих функций — линейная. Пусть f2(Z) =b +kz. Тогда выражение (1) примет видJ =f1 (z) dz+ k
zf1 (z) dz
Первый из написанных интегралов представляет собой площадь, ограниченную кривой f1 (z) (рис. 5.18), или, короче говоря, площадь эпюрыf1(z):
Второй интеграл характеризует статический момент этой площади относительно оси ординат, т.е.
где Zц.т — координата центра тяжести первой эпюры. Теперь получаем
Но =f2(zц.т.) Следовательно,
Таким образом, по способу Верещагина операция интегрирования заменяется перемножением площади первой эпюры на ординату второй (линейной) эпюры под центром тяжести первой.
Билет 20
1)Главные осевые моменты инерции. Определение их величин и направлений главных осей.
Оси, относительно которых центробежный момент JXcYc=0, наз-ся главными. Осевые моменты инерции относительно главных осей наз-ся главными моментами инерции.
«+» соответсвует максимальному моменту инерции, « — » — минимальному. После того как сечение вычерчено в масштабе и показано положение главных осей на глаз устанавливается направление осей (которой из двух соответствует максимальный, а которой – минимальный момент инерции).
2) Кручение стержня прямоугольного поперечного сечения (определение напряжений и перемещений).
На рисунке показана полученная методом теории упругости эпюра касательных напряжений для бруса прямоугольного сечения. В углах, как мы видим, напряжения равны нулю. Наибольшие напряжения возникают по серединам больших сторон, в точках А:
τА= τmax=
в=
τmax, где а — большая, b — малая сторона прямоугольника. Коэффициенты
и
зависят от отношения сторон
Коэффициент β также зависит от этого отношения. Эти данные приводятся в таблицах.
Угловое перемещение:
Ф-ла для расчёта касательных напряжений: , где
для расчёта углового перемещения:
Для прямоугольника: ,
–геометрические параметры, зависящие от формы сечения.
Потенциальная энергия, накопленная закрученным брусом:
Билет 21
1)Определение перемещений при растяжении-сжатии.
, где W – перемещение,
– удлинение, N – внутренняя сила на участке, E – модуль упругости первого рода, А – площадь поперечного сечения на участке.
Для однородного стержня длины , при Е= const, N = const:
2) Расчёт на прочность при изгибе. Понятие о расчётном и нормативном коэффициенте запаса.
По принципу независимости действия сил нормальное напряжение в произвольной точке, принадлежащей поперечному сечению бруса и имеющей координаты x, y, опр-ся суммой напр-й, обусловленных моментами Mx и My , т.е. (5.26)
Mx = Msin; My = Mcos, где- угол между плоскостью главного мемента М и осью Ох или Оу. (5.25)
Правило знаков для моментов: момент считается положительным, если в первой четверти координатной плоскости (там, где координаты x и y обе положительны) он вызывает сжимающие напряжения.
Если изгиб чистый, то один из моментов Mx или My равен 0 и выражение (5.26) принимает вид
, где
— осевой момент сопротивления,
– осевой момент инерции,
— расстояние по модулю до наиболее удалённой точки сечения от Ох.
При косом изгибе МХ , МУ .
Уравнение нейтральной линии, т.е. геометрического места точек, где нормальное напряжение принимает нулевые значения, находят, полагая в (5.26) = 0:
Откуда определяется:
(5.27)
Эпюра напряжений в поперечных сечениях бруса линейна, следовательно, максимальные напряжения в сечении возникают в точках наиболее удаленных от нейтральной линии.
Расчёт на прочность при изгибе проводится при условиях:
материал работает одинаково на растяжение и сжатие, т.е.
Условие прочности: , где
,
, где
– допускаемое значение предела текучести,
— коэф. запаса.
если неодинаково, то работают два условия:
, где
,
Если расчёт проектировочный, то из двух коэффициентов выбирется наибольший. В поверочном – наоборот.
В целях безопасной работы напряжения должны быть ниже предельных значений для данного материала. Таким образом при поверочном расчёте (нахожд. Нормативного коэф. запаса):
, где
— предельное кас. напряжение материала,nТ – коэф. запаса,
за расчётный коэффициент принимают [n] > nТ, где [n] – нормативный (предписываемый нормами проектирования конструкций) коэф. запаса.
Источник
Метод Мора. Интеграл Мора
Теорема Кастельяно дала нам возможность определять перемещения. Эту теорему используют для отыскания перемещений в пластинках, оболочках. Однако, вычисление потенциальной энергии громоздкая процедура и мы сейчас наметим более простой и наиболее общий путь определения перемещений в стержневых системах.
Пусть задана произвольная стержневая система и нам нужно определить в ней перемещение точки
по направлению
, вызванное всеми силами системы —
Т.к. в общем случае в системе нет силы, приложенной по направлению искомого перемещения, то воспользоваться теоремой Кастельяно нельзя. Добавим к числу прочих сил силу , приложенную к точке
и действующую в направлении
. Тогда внутренние силовые факторы в системе можно выразить
, где
— внутренние силовые факторы в системе от действующих сил;
— внутренние силовые факторы от силы
.
Внесем эти выражения в (3)
По теореме Кастельяно:
Учтя, что
получаем выражение:
называемое интегралом Мора.
Для того, чтобы определить перемещение с помощью метода Мора, необходимо:
1) Определить внутренние силовые факторы в системе от заданных сил.
2) Приложить по направлению искомого перемещения единичную обобщенную силу (единичную силу для определения линейного перемещение, пару сил с моментом равным единице для определения углового перемещения и определить внутренние силовые факторы от единичной силы.
3) Подставить полученные ранее выражения в интеграл Мора и определить перемещение.
Для систем, работающих на изгиб: балок, рам, влияние нормальных сил на величину перемещения незначительно и интеграл Мора в этом случае выглядит:
Источник