Внутренний сток каспийского моря бассейны

Гидрологические аспекты проблемы уровня Каспия

Уникальный природный водоем нашей планеты — Каспийское море расположено на крайнем юго-востоке Европейской территории России Море лежит на границе двух крупных частей единого материка Евразии.Географические координаты крайних точек современ­ной акватории Каспийского моря (без Кара-Богаз-Гола): на севере — 47° 07′ с.ш., на юге — 36° 33′ с.ш.; на западе — 46° 43′ в.д. и на востоке — 54°03’в.д.

Каспий занимает крупную и глубокую материковую депрессию в преде­лах самой обширной в Европе и СССР области внутреннего стока, не имеет связи с Мировым океаном, и уровень моря лежит на 28 м ниже уров­ня океана.

По размерам своей котловины Каспийское море — крупнейший на Зем­ле замкнутый водоем. Его общая площадь равна 378 400 км 2 , что состав­ляет 18% общей площади озер земного шара и в 4,5 раза превышает пло­щадь второго по величине озера мира — Верхнего (84 100 км 2 . Северная Америка) [Николаева, 1971; Мировой водный баланс и водные ресурсы Земли, 1974]. Вместе с тем площадь Каспийского моря соизмерима и даже значительно превосходит площадь некоторых морей Мирового океана:

Балтийского (387000 км 2 ), Адриатического (139000 км 2 ), Белого (87 000км 2 ) [Атлас океанов, 1977, 1980].

Каспийскому морю. в целом присуще субмеридиональное простирание. Наибольшая протяженность его с севера на юг составляет 1030 км (по меридиану 50° 00′ в.д.) . Наибольшая ширина достигает 435 км (по параллели 45°30’с.ш.), наименьшая — 196км (по параллели 40° 30’с.ш.).

Каспийское море — глубоководный водоем с сильно развитой шельфовой зоной. По величине максимальной глубины впадины — 1025 м — Кас­пий уступает лишь двум самым глубоким озерам мира — Байкалу (1620 м) и Танганьике (1435 м) [Малый атлас мира, 1981]. Средняя глубина Каспий­ского моря, рассчитанная по батиграфической кривой, равна 208 м.

Исходя из особенностей морфологического строения и физико-географи­ческих условий. Каспийское море принято делить на три части: Северный, Средний и Южный Каспий. За условную границу между Северным и Средним Каспием обычно принимают линию, соединяющую о-в Чечень с м. Тюб-Караган, а между Средним и Южным Каспием линию о-в Жилой—м. Куули В пределах Северного Каспия выделяют также западную и восточную части.

Для Каспийского моря, как и для любого замкнутого водоема, харак­терны значительные изменения природных условий, обусловленные комп­лексом климатических, гидрологических и геологических процессов, протекающих в пределах его водосборного бассейна. Среди компонентов природного комплекса моря весьма существенно изменяются морфомет-рия и топография водоема. Так, наблюдавшееся в 30-х годах текущего столетия уменьшение увлажненности в бассейне Каспия обусловило значи­тельное сокращение объема вод и резкое (1,8 м) понижение уровня моря. Это привело к сокращению площади водной поверхности, изменению конфигурации береговой линии, уменьшению глубин. В поледнее время наблюдается обратный процесс. Уровень Каспия из года в год возрастает что вызывает затопление огромных территорий.

ВОДНЫЙ БАЛАНС И УРОВЕНЬ МОРЯ.

Непостоянство уровня поверхности Каспийского моря — одна из главных особенностей его гидрологического режима. В вековом ходе уровня Каспийского моря выделяются циклические колебания различной продолжительности.

Вплоть до 30-х годов текущего столетия водный баланс Каспийского моря формировался под влиянием естественных климатических факторов, в результате их долговременных изменений. С середины 30-х годов на реках Каспийского бассейна началось интенсивное водохозяйственное строительство, влияние которого стало ощутимо сказываться в 50-е годы. К началу 70-х годов практически все крупные реки бассейна были зарегу­лированы, заполнены и пущены в эксплуатацию водохранилища. В резуль­тате этого уменьшился объем речного стока и изменилось его внутригодовое распределение. В 30-е годы уменьшение суммарного притока речных вод в Каспий не превышало 5—7 км 3 в год, в настоящее время безвозврат­ные изъятия достигают в отдельные годы около 50 км 3 в год. Следователь­но, помимо влияния климатических факторов, величина поверхностного притока в море испытывает ощутимое дополнительное влияние антропо-генной деятельности.

Исследование водного баланса за 1900—1982 гг. показало, что величины его приходной части почти все время были меньше, чем расходной, в основном за счет притока рек (табл. 1). Дефицит баланса, составивший в среднем 14 км 3 /год, обусловил общую тенденцию снижения уровня моря, продолжавшегося до 1977 г. включительно. Лишь в отдельные непродол­жительные отрезки времени приход воды в море превышал расход и проис­ходило повышение или стабилизация уровня (рис. 1).

Поверхностный приток в море складывается из стока рек Волги, Урала, Терека, Сулака, Самура, Куры, малых кавказских рек и рек Иранского побережья. Волга, бассейн которой составляет около 40% территории водо­сборного бассейна Каспия, определяет основную часть поверхностного при­тока к морю, достигающую около 80% общего его объема.

Изменения многолетнего сезонного стока Волги в различные отрезки времени достигают значительных величин (табл. 2).

Благоприятные гидрометеорологические условия в бассейне моря, сложившиеся в начале столетия (1900—1929 гг.), обусловили значитель­ный приток речных вод к морю и относительно высокое положение его уровня (см. рис. 1). В 30-е годы в бассейнах Волги и Урала наблюдался затяжной маловодный период. Величина волжского стока сократилась до 200 км 3 в год, в то время как в 1900—1929 гг. она достигала 250 км 3 в год. Главная причина этой маловодности — потепление климата, охватив­шее все северное полушарие. В результате значительно уменьшилось коли­чество атмосферных осадков, главным образом осенне-зимних, форми­рующих основной объем стока Волги.

В период 1942—1969 гг. бассейну моря был присущ более умеренный климат, поэтому водоносность рек несколько увеличилась и темпы падения

Таблица 1. Составляющие водного баланса Каспийского моря

уровня замедлились. Однако в первой половине 70-х годов в бассейне Каспийского моря опять сложились неблагоприятные гидрометеорологи­ческие условия и произошло падение уровня моря до самой низкой отмет­ки за все время проведения инструментальных наблюдений — до —29,0 м (1977 г.). Величина суммарного речного стока в 1970—1977 гг. оказалась даже ниже, чем в период интенсивного падения уровня в 30-х годах. Сток Волги уменьшился до 207 км 3 /год и был ниже средней многолетней нормы за 1900-1982 гг. -238 км 3 /год.

Изменение характера увлажненности в бассейне Каспия, наступившее в конце 70-х годов, привело к увеличению атмосферных осадков, водо­носность Волги резко повысилась, и произошел быстрый подъем уровня моря (см. табл. 2, рис. 1).

За исследованный период (1900-1982 гг.) разность между макси­мальным и минимальным поверхностным притоком в море составляет 260 км 3 . Наибольший суммарный поверхностный приток — около 460км 3 — отмечался в 1926г., а наименьший — 200 км 3 — в 1975 г.

Внутригодовое распределение поверхностного притока в Каспий, несмот­ря на различие физико-географических условий речных бассейнов и специ­фические особенности годового стока отдельных рек, почти полностью соответствует внутригодовому распределению стока Волги, составляю­щего основную долю общего притока в море.

В течение года четко выделяется максимум стока в мае—июне, в период прохождения половодья. В это время в море ежемесячно поступает

Рис. 1. Многолетние изменения стока Волги (км 3 /год) (д), уровня моря (м БС) (б): 1 — фактический, 2 — естественный

17—26% величины годового стока. Меньше всего речной воды поступает в зимние месяцы: в январе—феврале 3—7% годового стока.

Интенсивное использование водных ресурсов рек, начавшееся с 50-х годов, привело к уменьшению величины поверхностного притока в море, его внутригодовому перераспределению и, как следствие, к дополнитель­ному снижению уровня моря (см. рис. 1). В 70-х годах уменьшение вели­чины волжского стока за счет безвозвратных изъятий на народнохозяйст­венные нужды составляло уже около 20 км 3 в год [Шикломанов, 1976], что равняется 50% ежегодных суммарных изъятий из рек Каспийского бассейна. Всего с 1940 по 1982 г. море «недополучило» свыше 800 км 3 речной воды, что может быть почти соизмеримо с трехлетним стоком Волги в среднеклиматических условиях.

Поскольку объем атмосферных осадков, выпадающих на акваторию моря, существенно меньше объема речного стока, влияние осадков на меж­годовые изменения уровня моря значительно меньше, чем речного стока.

С начала столетия прослеживается тенденция увеличения осадков, выпадающих на поверхность моря. Их доля в водном балансе изменялась от 15% в начале столетия до 23% в 1978—1982 гг., когда на поверхность моря в среднем за год выпадало 257 мм, что существенно превышало среднемноголетнюю норму (191 мм). Наибольшее количество осадков — около 112 км 3 (308 мм) — было зарегистрировано в 1969 г., наименьшее — около 50 км 3 (132 мм) — в 1944 г. Таким образом, размах колебаний количества осадков составил около 60 км 3 (178 мм слоя). В течение года наименьшее количество осадков выпадает в летние месяцы — июль-август(табл. 3).

Читайте также:  Питание рек бассейна внутреннего стока евразии

Табл. 2. Внутригодовое распределение стока Волги (у с. Верхнего Лебяжьего) в 1900-1982 гг

Табл. 3. Внутригодовое распределение количества атмосферных осадков выпадающих на поверхность Каспия.

Испарение с поверхности моря — основная расходная составляющая водного баланса. Из-за отсутствия достаточного количества фактических наблюдений его величина в настоящее время оценивается по различным теоретическим и эмпирическим формулам. Использование методики расчета, разработанной в ГОИНе [Гоптарев, Панин, 1970], позволило уточнить межгодовое и Внутригодовое распределение величин испарения по акватории Каспия. На акватории моря наиболее высокая величина испарения характерна для Северного Каспия, а наиболее низкая — для Среднего Каспия.
Анализ межгодовых изменений величин испарения в текущем столетии показал, что самое интенсивное испарение было в 30-х годах, чему способст­вовала засушливость климата, связанная с преобладанием антициклони­ческого режима циркуляции атмосферы на значительной части ETC, что вызвало повышенное испарение не только в водосборном бассейне моря, но и на его акватории. В это время с поверхности моря ежегодно испаря­лось около 395 км 3 воды — намного больше, чем ее поступало в море. В результате в 1930—1941 гг. море «потеряло» около 740 км 3 воды.

Для испарения с поверхности Каспия характерны незначительные межгодовые изменения, свидетельствующие об относительной устойчивости этого фактора. Однако следует отметить, что в связи с понижением уровня моря и соответствующим сокращением площади его зеркала происходит изменения объема испаряющейся воды.

Сезонная изменчивость испарения более значительна, чем межгодовая. Так, с июня по декабрь с поверхности моря испаряется около 70% годового объема воды (табл. 4).

К расходным составляющим водного баланса до 1980 г. относился также сток морских вод из Каспия в залив Кара-Богаз-Гол. Непосредствен­ные наблюдения за стоком в залив велись с 1928 г. Среднемноголетняя величина стока за 1900—1979 гг. составила около 15 км 3 /год.

В начале столетия в залив стекало до 30 км 3 в год, в последующие годы, в связи с сокращением речного притока и понижением уровня моря, объем стока морских вод в залив постоянно сокращался (см. табл. 1).

С целью сокращения величины расходной составляющей водного баланса Каспия в 1980 г. Кара-Богаз-Гол был отделен от моря глухой плотиной, сток морских вод в залив прекратился. Перекрытие Кара-Богаз-Гола позволило «сэкономить» до 1985 г. более 40 км 3 морской воды, что в общем повышении уровня моря составило около 17 см слоя, и уровень моря ежегодно стал в среднем на 2,5—2,7 см выше, чем при существовании стока в залив.

Роль подземного притока в море в водном балансе Каспия незначитель­на, величина его ориентировочно оценивается в 4 км 3 /год [Потайчук, 1970].

За историческое время происходила неоднократная смена низких и’ высоких стояний уровня Каспия (рис. 2). В середине XVI в. уровень моря находился на отметке —26,6 м в последующее столетие произошло повы­шение уровня до —23,9 м, а в начале XVIII в. уровень опустился до отметки —26 м. После этого значительного снижения начался период высокого стояния уровня, и к началу XIX в. (1805 г.) его отметка достигла -22 м [Берг, 1934; Аполлов, 1951; Федоров, 1957; Николаева, Хан-Магомедов, 1962]. С начала проведения инструментальных наблюдений (1837 г.) и до начала XX в. уровень сохранял положение в среднем около —25,8 м. С 1900 по 1929 г. изменения уровня были незначительными и происхо­дили около средней отметки —26,2 м. Это относительно равновесное поло­жение уровня сменилось его резким снижением: с 1930 по 1941 г. оно составило 1,8 м и -было связано с крупномасштабными климатическими изменениями. В последующие годы снижение уровня Каспия происходило более медленно, а в 60-е годы наблюдалась некоторая его стабилизация около отметки —28,4 м. В первой половине 70-х годов произошло пони­жение уровня до экстремально низкой за последние 150 лет отметки: -29 м в 1977 г. Общее снижение с 1900 по 1977 г. составило 3 м, в том числе за счет хозяйственной деятельности — около 1 м. С 1978 г. уровень Каспия стал резко повышаться и в 1985 г. достиг отметки —27,97 м,т.е. поднялся более чем на метр.

Современное повышение уровня не представляет собой аномального явления. Как отмечалось, значительные колебания уровня наблюдались как в прошлом, так и в текущем столетии. Так, приращение уровня на 20-30 см в год отмечалось в 1865-1866, 1895-1896, 1933-1934, 1937-1938 гг. Повышение уровня моря, наблюдающееся с 1978 г., обусловлено главным образом увеличением объема поступающего в море волжского стока, а также количества атмосферных осадков,выпадающих на поверх­ность моря. В 1978—1983 гг. количество атмосферных осадков сущест­венно превышало их среднюю многолетнюю норму, достигнув 256 мм в год.

Внутригодовое изменение уровня имеет четко выраженный сезонный характер (рис. 3), обусловленный изменчивостью составляющих водного баланса. В зимнее время уровень — низкий, затем вследствие интенсивного поступления в море речных вод наблюдается его весенне-летнии подъем. Основное накопление воды в море происходит в июне—июле, и уровень достигает наивысшего положения. С августа, в связи с уменьшением речно­го притока и увеличением испарения с морской акватории, уровень посте­пенно понижается до зимнего минимума, наблюдающегося в январе-феврале.

Средняя многолетняя величина внутригодрвых изменений уровня за 1900—1983 гг. составила 30 см (табл. 5). Наибольшая величина его

Рис 2. Вековые изменения уровня Каспийского моря. 1500-1900-по Л. С. Бергу: 1901-1083 гг.-данные ГОИНа.

Рис 3. Среднемноголнтние внутригодовые изменения уровня Каспийского моря 1 — 1942-1955 гг., 2 — 1956-1984гг., 3 – 1970-1977гг., 4 – 1978-1984гг .

годовых изменений наблюдалась в многоводный 1926 г. (50 см), наимень­шая — в маловодный 1975 г. (25 см).

Зарегулирование речного стока в бассейне Каспийского моря повлияло на сезонный ход уровня. В современных условиях половодье на Волге начинается на месяц-полтора раньше и проходит быстрее, чем до 50-х го­дов. Это приводит к более раннему наступлению среднемесячного макси­мума в годовом ходе уровня. Весенне-летние попуски речной воды вызы­вают некоторое сглаживание хода уровня в это воемя года, а зимние по­пуски, наоборот, приводят к повышению уровня. Таким образом, в целом в течение года ход уровня стал более плавным (см. рис. 3).

Большой научный и практический интерес представляет разработка прогнозов уровня моря. В настоящее время существует несколько методов. Во-первых, это так называемые климатические (гелиогеофизи-

ческие) прогнозы. Они основаны на физических моделях, связывающих колебания уровня Каспия или отдельных составляющих водного баланса с различными внешними факторами — температурой воздуха и другими метеорологическими характеристиками, атмосферной циркуляцией, сол­нечной активностью.

Многие авторы [Белинский, Калинин, 1946; Гире, 1971; Аполлов, Алексеева, 1959; Соскин, 1959; Эйгенсон, 1963; Антонов, 1963; и др.] проводили поиск этих закономерностей временных изменений уровня моря, обусловленных геофизическими и климатическими факторами. Однако климатический прогноз на длительное время для таких обширных территорий, как бассейн Каспия, продолжает оставаться одной из сложных и нерешенных проблем науки. Несмотря на то что наличие солнечно-земных связей в настоящее время признано, механизм этих связей и теоретическая сторона вопроса остаются во многом неясными. Зависимости между уровнем моря и характеристиками атмосферной циркуляции также далеко не всегда дают возможность получить прогноз на длительное время.

Ко второй группе прогнозов относятся вероятностно-статистические методы, суть которых состоит в вероятностном описании колебаний уровня исходя из представлений о порождающих их климатических и гидрологических факторах как о стохастических процессах [Крицкий и др., 1975]. Поскольку изменения водного баланса и уровня Каспия обус­ловлены взаимодействием двух основных факторов: поверхностного притока речных вод и видимого испарения (атмосферные осадки минус испарение), то расчеты и моделирование рядов этих характерис­тик- позволяют исследовать изменчивость уровня моря как в естественных условиях формирования гидрологического режима, так и при различных его нарушениях.

Расчеты вероятных изменений уровня Каспийского моря на длитель­ную перспективу, основанные на воднобалансовом методе, выполнены многими исследователями [Калинин, 1968; Архипова и др., 1972; Смир­нова, 1972; Раткович и др., 1973; Шикломанов, 1976; и др.]. Полученные прогнозы хотя и отличаются друг от друга в количественном отношении, но сходны в том, что к концу столетия при средних гидрометеорологи­ческих условиях можно ожидать некоторого снижения уровня моря.

Читайте также:  Насос для фонтана погружной vodotok hj 743 с насадками

Основным затруднением разработки климатического направления прогнозов является то обстоятельство, что для построения надежных физических моделей необходимо найти такие определяющие внешние факторы, изменения которых опережали бы изменения уровня или состав­ляющих водного баланса на срок не менее заблаговременное™ прогноза. Найти такие факторы трудно, поэтому возникает необходимость экстра­поляции их, что представляет не менее сложную задачу, чем разработка самого метода сверхдолгосрочного прогноза уровня моря.

Вероятностно-статистические методы прогноза имеют более строгую теоретическую основу, чем климатические, но вероятностная форма полу­чаемых прогнозов, когда однозначно определяется календарный ход уровня при средних условиях притока и испарения и задается широкая полоса вероятных отклонений положения уровня в каждый год прогно­зируемого периода, затрудняет их практическое использование.

Таким образом, в настоящее время не существует достаточно надеж­ных методов прогнозирования ожидаемых изменений уровня Каспийского моря, что существенно затрудняет решение вопросов, связанных с эконо­микой и развитием народного хозяйства в бассейне моря. Разработка таких методов — одно из наиболее важных направлений исследований Каспия.

ГИДРОЛОГИЧЕСКАЯ СТРУКТУРА И ВОДНЫЕ МАССЫ.

Своеобразие условий формирования гидрологической структуры вод Каспийского моря определяется его замкнутостью, внутриматериковым положением, большой меридиональной протяженностью, воздействием речного стока, конфигурацией берегов и рельефом морского дна.

Замкнутость моря исключает адвекцию вод из других бассейнов, пред­определяет формирование „структуры вод Каспия путем взаимодействия процессов, происходящих в самом водоеме. Расположение моря глубоко внутри материка Евразии обусловливает значительное воздействие таких внешних факторов, как тепловое и динамическое состояние атмосферы и речной сток. Вытянутость моря в меридиональном направлении более чем на 10° создает большие климатические различия между отдельными его частями, сильнее всего проявляющиеся в зимний сезон. Сложный рельеф дна моря (глубоководные котловины, разделенные порогом, многочисленные острова и банки) влияет на особенности циркуляции вод и характер водообмена. Так, Апшеронский порог ограничивает водо-обмен между котловинами Среднего и Южного Каспия, способствуя фор­мированию в каждой из них своеобразной гидрологической структуры.

В целом гидрологическая структура вод моря создается путем взаимо­действия процессов горизонтальной и вертикальной турбулентности и циркуляции вод, вызываемых различными факторами — полем ветра, потоками тепла и массы через поверхность моря, полем плотности, влия­нием конфигурации берегов. Гидрологические условия в разных частях моря существенно зависят также от водообмена между ними.

Сезонные изменения гидрологических условий в Каспийском море весь­ма значительны, хотя они неодинаковы по акватории и в общем умень­шаются в направлении с севера на юг. В Северном Каспии большая величи­на сезонных изменений теплового состояния вод определяется резкой кон-тинентальностью климата, а солености — сосредоточением здесь основного количества поступающих в море речных вод. По направлению на юг влия­ние этих факторов уменьшается. Кроме того, больший объем водных масс Среднего и Южного Каспия делает режим этих частей моря более устой­чивым по отношению к внешним воздействиям, чем мелководного Север­ного Каспия.

Зимой, благодаря климатическим различиям между северными и южны­ми районами моря, температура воды на поверхности изменяется от О— 0,5° у кромки льда до 10,0—10,7° на юге моря. При этом у запад­ного берега моря температура воды ниже благодаря переносу на юг холод­ных вод с севера, а вдоль восточного берега выше в связи с поступлением на север более теплых южнокаспийских вод. Вертикальные термические различия в толще вод зимой малы вследствие интенсивного развития процессов конвективного перемешивания.

Летом, наоборот, климатические условия над акваторией моря квази­однородные и горизонтальные температурные различия водных масс в це­лом меньше, чем зимой. В августе на большей части акватории температура воды на поверхности находится в пределах от 22—23 до 26—27°. Лишь в районе у восточного берега Среднего Каспия в июле—августе часто об­разуется обширная зона отрицательных аномалий температуры воды (до 16—11°). Ее образование связано со сгонным эффектом частых в летнее время и устойчивых северо-западных ветров, приводящим к выходу на поверхность более холодных вод промежуточных слоев. Эти воды выде­ляются также по своим химическим и биологическим характеристикам.

При интенсивном прогреве моря весной на нижней границе слоя ветро­вого перемешивания образуется термоклин, достигающий максимального развития в августе .Существование в летний сезон резко выра­женного термоклина вблизи от поверхности моря ограничивает распростра­нение термохалинных возмущений в глубинные слои воды. С началом осеннего охлаждения и развитием конвективного перемешивания термоклин разрушается, и в море снова формируется «зимний» тип распределения температуры со значительной однородностью ее по глубине и большими различиями в верхнем слое. Наибольшие годовые разности температуры воды на поверхности моря — до 20° — наблюдаются в его северных райо­нах, а также у восточных берегов Южного Каспия, что обусловлено интен­сивным летним прогревом и зимним охлаждением мелководий. Для центральной части Южного Каспия характерны наименьшие изменения темпе­ратуры в течение года, соответствующие небольшим сезонным климати­ческим различиям. У западного и восточного берегов Среднего Каспия, в районах апвеллинга, величина годовой разности температуры на поверх­ности уменьшается на 14—15°.

Сезонные изменения температуры в глубинных слоях моря зависят от развития процессов конвективного перемешивания. В Среднем Каспии сезонные различия температуры наиболее существенны в слое толщиной около 200 м, в Южном Каспии — в слое до 100 м, что связано с развитием здесь зимней вертикальной циркуляции. В суровые зимы, когда конвекция распространяется до больших глубин, понижение температуры может охватывать более значительную толщу воды, а в Среднем Каспии оно до­ходит • до дна. В придонных слоях Среднего Каспия температура равна 4,5-5,0, Южного — 5,7-6,0°.

На меридиональном разрезе вдоль 51° в.д. максимальные величины годовой разности температуры воды присущи верхнему слою толщиной 30—40 м . Наименьшие сезонные изменения темпера­туры (0,2—0,3°) в Среднем Каспии отмечаются в промежуточном слое 75—300 м. В Южном Каспии слой минимальной сезонной изменчивости (менее 0,1°) находится значительно глубже — от 350 до 650 м.

Характерную особенность рассматриваемого разреза представляет уве­личение годовой разности температуры воды вдоль северного склона впадины и в придонных слоях Среднего Каспия, вплоть до Апшеронского порога. Это связано с влиянием процесса плотностного сто­ка в зимнее время холодных вод по северному склону среднекаспийской впадины в ее придонные слои. В Южном Каспии, вдоль склона Апшерон­ского порога и в придонных слоях также прослеживается некоторое воз­растание величин изменчивости температуры.

Таким образом, распределение величин годовой изменчивости темпе­ратуры воды в Среднем и Южном Каспии свидетельствует о том, что наи­большие сезонные изменения отмечаются в верхнем слое, а также в при­донных горизонтах и вдоль склонов глубоководных впадин, а в глубинной толще вод, особенно в южной части моря, они малы.

Пространственные изменения солености воды больше всего в Северном Каспии, где она возрастает от 0,1—0,2°/о о вблизи устьев Волги и Урала до 10—12°/о о на границе со Средним Каспием.

В глубоководных частях моря соленость на поверхности увеличивается в целом с севера на юг и с запада на восток. Такое распределение соленос­ти связано с опресняющим влиянием речного стока вдоль западного побе­режья и осолонением вод у восточного берега, в условиях полного отсут­ствия здесь пресного стока и интенсивного испарения. В откры-тых райо­нах моря соленость редко выходит за пределы 12,7-13,2°/оо. Вертикаль­ное .распределение солености в Среднем и Южном Каспии весьма однород­ное — от поверхности до дна ее увеличение не превышает десятых долей промилле .

Изменения солености в различных районах моря от сезона к сезону не отличаются той однонаправленностью, которая присуща изменениям тем­пературы. Так, от весны к лету на всей акватории Южного Каспия соленость возрастает вследствие увеличения испарения. В то же время в Среднем Каспии, где проявляется влияние опресненных северокаспийских вод, соленость на большей части акватории понижается.

Изменения солености от ноября к февралю носят противоположный характер. В Южном Каспии соленость уменьшается, а в Среднем возраста­ет, что объясняется условиями водообмена между этими частями моря. В это время года более соленые южнокаспийские воды поступают в сред­нюю часть моря, а в южную выносятся менее соленые среднекаспийские воды.

Читайте также:  Какие надо материалы для бассейна

Максимальные величины годовой разности солености на поверхности, превышающие 1% о, отмечаются на северной границе Среднего Каспия и в приустьевых районах. На акватории открытого моря они весьма малы и составляют в среднем 0,2—0,4° /оо

Величины годовой разности солености на разрезе по меридиану 51 в.д. показывают, что в толще вод они в основном не превышают 0,2—0,3°/оо Минимальные величины изменчивости (0,1°/оо и менее) свойственны глубинным слоям бассейнов. На склонах Апшеронского порога годовые изменения солености больше, что связано с интенсивным водообменом между Средним и Южным Каспием через Апшеронский порог.

Однородное распределение солености в глубоководных частях Каспий­ского моря — важная черта его гидрологической структуры, обусловли­вающая ее сезонную изменчивость главным образом за счет температуры. Именно температура воды, при мало изменяющейся солености, определя­ет основные особенности поля плотности в зимний и летний сезоны и вли­яет на вертикальную устойчивость вод, особенно в верхних слоях. В глу­бинных и придонных слоях моря, где изменения гидрологических характе­ристик малы, в формировании поля плотности возрастает роль солености.

Как показывает распределение условной плотности на поверхности моря в феврале и августе, ее изменения по акватории моря малы — от 0,5 усл. ед. зимой до 1,5 усл. ед. летом. В феврале плотность в Среднем Каспии более 11,0 усл. ед., а в Южном — около 10,5 усл. ед. В августе зна­чения плотности уменьшаются в среднем на 3 усл. ед., что и составляет величину годовых изменений плотности на поверхности моря.

Следует отметить однонаправленное влияние сезонных изменений тем­пературы и солености на плотность в Среднем Каспии и их противополож­ное влияние в Южном Каспии. Увеличение речного стока в период поло­водья по времени совпадает с прогревом поверхностных слоев воды и совместное влияние этих факторов способствует уменьшению плотности верхнего слоя воды в Среднем Каспии в весенне-летний сезон. В зимнее время наблюдается усиление поступления более соленых южнокаспийских вод в среднюю часть моря и дальнейшее их охлаждение. Оба фактора вызы­вают увеличение плотности вод в Среднем Каспии.

В Южном Каспии в летний сезон осолонение поверхностных слоев воды при испарении и интенсивный прогрев оказывают противоположное влияние на изменения плотности воды. Зимой поступление в южную часть моря менее соленых среднекаспийских вод снижает эффект повышения плот­ности вод в процессе зимнего охлаждения. К тому же и само охлаждение вод в Южном Каспии существенно меньше, чем в Среднем.

Небольшая вертикальная стратификация Каспийского моря по соленос­ти и плотности — один из основных факторов, создающих благоприятные условия для развития конвективного перемешивания во всей толще его вод. Перемешивание верхних слоев моря, как отмечалось, происходит благодаря активно развитой зимней вертикальной циркуляции. В переме­шивании и вентиляции глубинных слоев важную роль играет плотностной сток из северных мелководных районов моря. Высокая плотность образу­ющихся здесь зимой вод позволяет им стекать до самых больших глубин среднекаспийской впадины и далее, переливаясь через Апшеронский порог, поступать в глубинные слои южной части моря. В придонном слое Южного Каспия перемешивание происходит также за счет конвекции, Возбуждае­мой тепловым потоком от дна моря.

Сравнение распределения плотности на разрезе по меридиану 51° в.д., в феврале и августе показывает, что зимой увеличение плотности проис­ходит практически во всей толще вод. В летнее время небольшое повыше­ние плотности отмечается в придонных слоях Южного Каспия, что может служить подтверждением постепенного поступления в этот бассейн вод с высокой плотностью, образовавшихся зимой в Среднем Каспии.

Зимняя вертикальная циркуляция и плотностной сток вод обеспечива­ют достаточное насыщение глубинных слоев кислородом и вызывают ком­пенсационный подъем глубинных вод, обогащенных биогенными вещест­вами, в верхний слой моря. Эти процессы создают благоприятные условия для формирования высокой биологической продуктивности в Среднем и Южном Каспии.

По совокупности физико-химических и биологических характеристик вод в Каспийском море были выделены следующие водные массы: северо­каспийская, верхняя каспийская, глубинная среднекаспийская и глубинная южнокаспийская.

Северокаспийская водная масса занимает северную часть моря. Ее объ­ем незначителен (менее 1% от общего .объема моря), но она оказывает существенное влияние на гидрологические и биологические процессы всего моря. Основные условия формирования северокаспийской водной массы- влияние обильного речного стока и мелководность северной части моря. За южную границу северокаспийской водной массы можно условно принять изогалину 11°/о о- Температура северокаспийской водной массы изменяется в широких пределах — от 0 зимой до 25° летом. Зимой боль­шая часть акватории Северного Каспия покрыта льдом, температура воды подо льдом почти равна температуре замерзания. Летом большая часть северокаспийской воды хорошо прогрета от поверхности до дна и имеет температуру выше 23—24°. Соленость северокаспийской воды понижен­ная даже относительно солености всего Каспийского моря. По направле­нию от устьев Волги и Урала на юг соленость ее увеличивается от 0,1— 0,2 до 10—11 °/оо. Поскольку это возрастание солености происходит посте­пенно, между северокаспийской и верхней каспийской водными массами существует довольно широкая переходная зона. Средняя соленость северокаспийской водной массы значительно изменяется в зависимости от мно­голетних колебаний волжского стока. В периоды опреснения средняя соленость равна 4-5°/оо в периоды осолонения — 9—11°/оо. Вертикаль­ные градиенты солености наблюдаются главным образом в западном районе, наиболее подверженном влиянию речного стока. В остальных рай­онах вертикальные градиенты гидрологических характеристик весьма малы.

В формировании верхней каспийской водной массы главную роль игра­ют процессы зимнего охлаждения и перемешивания и летнего прогрева, а также динамические процессы в верхнем слое моря (волнение, ветровые течения, сгонные явления, внутренние волны). Нижняя граница этой вод­ной массы определяется глубиной распространения зимней вертикальной циркуляции и располагается в Среднем Каспии в слое 150—200 м, в Юж­ном — 50—150 м. На нижней границе происходит существенное пониже­ние содержания кислорода и уменьшение вертикальных градиентов тем­пературы. В летней модификации выделяется хорошо прогретый и пере­мешанный верхний слой толщиной 20—30 м, ограниченный снизу резким термоклином. Соленость верхней каспийской водной массы в большинстве случаев равна 12,7—13,0°/оо- Эта водная масса отличается высоким содер­жанием кислорода: в верхнем слое — от 7,5—8,0 зимой до 6,0—6,5 мл/л летом, на нижней границе содержание кислорода не менее 4,5—5,5 мл/л.

Глубинные водные массы формируются главным образом в зимние месяцы в результате плотностного стока холодных вод из северных райо­нов моря, а также с восточного шельфа. Эти воды опускаются в придонные слои среднекаспийской котловины, а переливаясь через Апшеронский по­рог, поступают и в южно каспийскую впадину. В суровые зимы в форми­ровании глубинных вод принимает участие и зимняя вертикальная цирку­ляция. Глубинные каспийские водные массы имеют следующие средние термохалинные характеристики: среднекаспийская (250—300 м — дно) — температура 3,9—5,2°, соленость 12,7—13,0°/о о, содержание кислорода 3,0—5,5 мл/л; южнокаспийская (100—150 м — дно) — температура 5,7—6,3°, соленость 12,8—13,1°/оо» содержание кислорода 2,0— 3,5 мл/л. Анализ изменчивости термохалинных характеристик глубинных водных масс по­казывает, что вся толща вод моря находится в подвижном состоянии, что имеет первостепенное значение для такого замкнутого водоема, как Кас­пийское море.

Таким образом, современный водный режим Каспийского моря в течение периода инструментальных наблюдений существенно изменялся. Начиная с 1882 по 1977 г., несмотря на отдельные флуктуации уровень моря прак­тически непрерывно падал и в отдельные годы это падение превышало 30 см. Значительное снижение уровня моря было тесно связано с особенностями развития климатических процессов. Начиная с конца про итого столетия климат постепенно теплел, что повлияло на процессы, определяю­щие водообмен на поверхности суши.

В последние же годы Уровень Каспия возрастает. Пока нет общепризнаной гипотезы, объясняющей это явление. Если этот процесс и будет продолжаться, то часть астраханской области окажется под водой. Возникнет необходимость строительства дамб, плотин. Но такая угроза возникнет не раньше чем через 100 лет.

Список используемой литературы.

1. С. И Варущенко «Изменение режима Каспийского моря и бессточных водоемов в палеовремени. М. Наука 1987.

2. Каспийское море: гидрология и гидрохимия. М. Наука 1986.

3. Каспий-настоящее и будущее. Тез. докл. Международной конф. Астрахань.

4. Касынов А. Г. «Каспийское море» Л. 1987.

5. Крицкий С. К. «Колебания уровня Каспийского моря» М. Наука 1975.

Источник

Оцените статью