Угол поворота интегралом мора

Метод Мора. Интеграл Мора

Теорема Кастельяно дала нам возможность определять перемещения. Эту теорему используют для отыскания перемещений в пластинках, оболочках. Однако, вычисление потенциальной энергии громоздкая процедура и мы сейчас наметим более простой и наиболее общий путь определения перемещений в стержневых системах.

Пусть задана произвольная стержневая система и нам нужно определить в ней перемещение точки по направлению , вызванное всеми силами системы —

Т.к. в общем случае в системе нет силы, приложенной по направлению искомого перемещения, то воспользоваться теоремой Кастельяно нельзя. Добавим к числу прочих сил силу , приложенную к точке и действующую в направлении . Тогда внутренние силовые факторы в системе можно выразить

, где — внутренние силовые факторы в системе от действующих сил;

— внутренние силовые факторы от силы .

Внесем эти выражения в (3)

По теореме Кастельяно:

Учтя, что

получаем выражение:

называемое интегралом Мора.

Для того, чтобы определить перемещение с помощью метода Мора, необходимо:

1) Определить внутренние силовые факторы в системе от заданных сил.

2) Приложить по направлению искомого перемещения единичную обобщенную силу (единичную силу для определения линейного перемещение, пару сил с моментом равным единице для определения углового перемещения и определить внутренние силовые факторы от единичной силы.

3) Подставить полученные ранее выражения в интеграл Мора и определить перемещение.

Для систем, работающих на изгиб: балок, рам, влияние нормальных сил на величину перемещения незначительно и интеграл Мора в этом случае выглядит:

Источник

Определение прогибов и углов поворотов методом Мора

изображение Интеграл Мора сопромат

Интеграл Мора позволяет определять прогибы и углы поворота заданного сечения балки, используя интегральное исчисление. Хотя данный метод предпочтительнее метода начальных параметров, он неудобен из-за необходимости вычисления интеграла. Из интеграла Мора был получен удобное для практического применения правило Верещагина, при котором не нужно вычислять интегралы, а только нужно находить площадь и центр тяжести эпюр.

Читайте также:  Ювелирные украшения морской жемчуг

Получение формулы интеграла Мора

Рассмотрим балку, изображенную на рис. 15.6, а. Обозначим изображение Интеграл Мора сопромати изображение Интеграл Мора сопромат, соответственно, изгибающий момент и поперечную силу, возникающие в заданной балке от действующей на нее группы нагрузок P. Пусть требуется определить прогиб балки (изображение Интеграл Мора сопромат) в точке K.

изображение Интеграл Мора сопромат

Введем в рассмотрение вспомогательную балку (та же балка, но нагруженная только единичной силой либо единичным изгибающим моментом). Нагрузим ее только одной силой (рис. 15.6, б). Единичную силу приложим в точке K, где нужно определить прогиб.

Внутренние усилия, возникающие во вспомогательной балке, обозначим изображение Интеграл Мора сопромати изображение Интеграл Мора сопромат.

изображение Интеграл Мора сопромат

Воспользуемся теперь теоремой о взаимности работ, согласно которой работа внешних сил, приложенных к вспомогательной балке на соответствующих перемещениях заданной балки равна взятой с обратным знаком работе внутренних сил заданной балки на соответствующих перемещениях вспомогательной балки. Тогда .

При определении перемещений в балке, как правило, можно пренебрегать влиянием поперечной силы, ( не учитывать второе слагаемое).

Тогда, учитывая, что изображение Интеграл Мора сопромат, окончательно получим формулу интеграла Мора : изображение Интеграл Мора сопромат.

Определение перемещений по формуле интеграла Мора часто называют определением перемещений методом Мора , а саму формулу – интегралом Мора .

Входящие в интеграл Мора изгибающие моменты берутся в произвольном поперечном сечении и поэтому представляют собой аналитические функции от текущей координаты z.

Заметим, что если мы хотим в этой же точке K определить угол поворота поперечного сечения (изображение Интеграл Мора сопромат), то нам необходимо к вспомогательной балке приложить не единичную силу, а единичный момент изображение Интеграл Мора сопромат(рис. 15.6, в).

порядок вычисления перемещений методом Мора:

· к вспомогательной балке в той точке, где требуется определить перемещение, прикладываем единичное усилие. При определении прогиба прикладываем единичную силу изображение Интеграл Мора сопромат, а при определении угла поворота – единичный момент изображение Интеграл Мора сопромат;

· для каждого участка балки составляем выражения для изгибающих моментов заданной (изображение Интеграл Мора сопромат) и вспомогательной (изображение Интеграл Мора сопромат) балок;

· вычисляем интеграл Мора для всей балки по соответствующим участкам;

· если вычисленное перемещение имеет положительный знак, то это означает, что его направление совпадает с направлением единичного усилия. Отрицательный знак указывает на то, что действительное направление искомого перемещения противоположно направлению единичного усилия.

Читайте также:  Любишь море будешь пиратом

Вычисление интеграла Мора пример

Пусть для шарнирно опертой балки постоянной изгибной жесткости изображение Интеграл Мора сопромат, длиной l, нагруженной равномерно распределенной нагрузкой интенсивностью q (рис. 15.7, а), требуется определить прогиб посредине пролета (изображение Интеграл Мора сопромат) и угол поворота на левой опоре (изображение Интеграл Мора сопромат).

определение прогиба с помощью интеграла Мора

изображение Интеграл Мора сопромат

В том месте, где нам нужно определить прогиб, к вспомогательной балке прикладываем единичную силу (рис. 15.7, б).

изображение Интеграл Мора сопроматЗаписываем выражения для изгибающих моментов для каждого из двух участков (изображение Интеграл Мора сопромат) заданной и вспомогательной балок:

изображение Интеграл Мора сопромат

.

изображение Интеграл Мора сопромат

.

Вычисляем интеграл Мора . Учитывая симметрию балки, получим:

изображение Интеграл Мора сопромат

.

Определение угла поворота методом Мора

изображение Интеграл Мора сопромат

Нагружаем вспомогательную балку единичным моментом , прикладывая его в том месте, где мы ищем угол поворота (рис. 15.7, в).

изображение Интеграл Мора сопромат

Записываем выражения для изгибающих моментов в заданной и вспомогательной балках только для одного участка ():

изображение Интеграл Мора сопромат

;

изображение Интеграл Мора сопромат

.

Тогда интеграл Мора будет иметь вид:

изображение Интеграл Мора сопромат

.

изображение Интеграл Мора сопромат

Положительный знак в выражении для угла поворота поперечного сечения балки указывает на то, что поворот сечения происходит по направлению единичного момента .

Источник

метод Верещагина

Определить перемещение точки К балки (см. рис.) при помощи интеграла Мора.

1) Составляем уравнение изгибающего момента от внешней силы MF.

2) Прикладываем в точке К единичную силу F = 1.

3) Записываем уравнение изгибающего момента от единичной силы .

Определить перемещение точки К балки по способу Верещагина.

2) Прикладываем в точке К единичную силу.

; ;

Определить углы поворота на опорах А и В для заданной балки (см. рис.).

Строим эпюры от заданной нагрузки и от единичных моментов, приложенных в сечениях А и В (см. рис.). Искомые перемещения определяем с помощью интегралов Мора

,

, которые вычисляем по правилу Верещагина.

C1 = 2/3, C2 = 1/3,

а затем и углы поворота на опорах А и В

Определить угол поворота сечения С для заданной балки (см. рис.).

Определяем опорные реакции RA=RB,

, , RA = RB = qa.

Строим эпюры изгибающего момента от заданной нагрузки и от единичного момента, приложенного в сечении С, где ищется угол поворота. Интеграл Мора вычисляем по правилу Верещагина. Находим параметры эпюр

Читайте также:  Сколько морей содержит тихий океан

C2 = —C1 = -1/4,

а по ним и искомое перемещение

.

Определить прогиб в сечении С для заданной балки (см. рис.).

1. Построение эпюр изгибающих моментов.

Эпюра MF (рис. б)

ВЕ: , ,

, RB + RE = F, RE = 0;

АВ: , RА = RВ = F; , .

Вычисляем моменты в характерных точках , MB = 0, MC = Fa и строим эпюру изгибающего момента от заданной нагрузки.

Эпюра (рис. в).

В сечении С, где ищется прогиб, прикладываем единичную силу и строим от нее эпюру изгибающего момента, вычисляя сначала опорные реакции ВЕ, , = 2/3; , , = 1/3, а затем моменты в характерных точках , , .

2. Определение искомого прогиба. Воспользуемся правилом Верещагина и вычислим предварительно параметры эпюр и :

,

.

Определить прогиб в сечении С для заданной балки (см. рис.).

Строим эпюры изгибающих моментов от заданной нагрузки и от единичной силы, приложенной в точке С. Пользуясь правилом Верещагина, вычисляем параметры эпюр ,

.

Определить прогиб в сечении С для заданной балки (см. рис.).

1. Построение эпюр изгибающих моментов.

, , RA = 2qa,

, RA + RD = 3qa, RD = qa.

Строим эпюры изгибающих моментов от заданной нагрузки и от единичной силы, приложенной в точке С.

2. Определение перемещений. Для вычисления интеграла Мора воспользуемся формулой Симпсона, последовательно применяя ее к каждому из трех участков, на которые разбивается балка.

Участок АВ:

Участок ВС:

Участок СD:

.

Определить прогиб сечения А и угол поворота сечения Е для заданной балки (рис. а).

1. Построение эпюр изгибающих моментов.

Эпюра МF (рис. в). Определив опорные реакции

, , RB = 19qa/8,

, RD = 13qa/8, строим эпюры поперечной силы Q и изгибающего момента МF от заданной нагрузки.

Эпюра (рис. д). В сечении А, где ищется прогиб, прикладываем единичную силу и строим от нее эпюру изгибающего момента.

Эпюра (рис. е). Эта эпюра строится от единичного момента, приложенного в сечении Е, где ищется угол поворота.

2. Определение перемещений. Прогиб сечения А находим, пользуясь правилом Верещагина. Эпюру МF на участках ВС и CD разбиваем на простые части (рис. г). Необходимые вычисления представляем в виде таблицы.

Источник

Оцените статью