Угловое перемещение интеграл мора

1.2 Порядок выполнения расчета углового перемещения сечения «д» балки с помощью интеграла Мора

Расчет ведется в том же порядке, что и при вычислении прогиба. Однако вместо единичной силы в сечении, где необходимо найти угловое перемещение (в данной задаче – в сечении «Д»), прикладывается безразмерный единичный момент = 1. Дальнейшее вычисление углового перемещения Д (угла поворота сечения «Д») производится в соответствии с п.п. 1.1.8, 1.1.9, 1.1.10.

1.3 Порядок выполнения расчета вертикального перемещения сечения «д» рамы с помощью формулы Симпсона

1.3.1 В соответствии с индивидуальным шифром:

— выписать исходные данные из таблицы 1.1 (номер расчетной схемы, нагрузки F, M, q, размеры h и l);

— начертить заданную расчетную схему рамы (рисунок 1.2).

1.3.2 Вычислить реакции опор от внешних нагрузок (см. «Методические указания…», часть 1, раздел 2 – вычисление ВСФ).

1.3.3 Вычислить значения продольной силы, поперечной силы и изгибающего момента (Nz, Qу и Mх) от внешних нагрузок и построить их эпюры.

1.3.4 Из условия прочности при изгибе вычислить осевой момент сопротивления сечения балки Wx

где — максимальный изгибающий момент (принимается максимальная

абсолютная величина из эпюры Мх).

1.3.5 По сортаменту прокатных сечений (ГОСТ 8239-89, приложение В, таблица В.2), зная величину Wx:

— подобрать двутавровое сечение стандартного профиля (номер двутавра);

— выписать из таблицы сортамента значение главного момента инерции Jх (см 4 ) выбранного двутавра.

1.3.6 Начертить схему данной балки, отбросив все внешние нагрузки.

1.3.7 Приложить вертикальную единичную силу = 1 в точке, где необходимо найти вертикальное перемещение Δ (в данной задаче – в точке Д).

1.3.8 Вычислить реакции опор от единичной вертикальной силы = 1.

1.3.9 Вычислить значения изгибающего момента и построить единичную эпюру .

1.3.10 Вычислить вертикальное перемещение ΔД сечения Д по формуле Симпсона

где n – количество участков;

Читайте также:  Морской коллаген где содержится

l — длина участка эпюр;

— ординаты левого, среднего и правого изгибающего

момента на соответствующем участке эпюры

— ординаты левого, среднего и правого изгибающего

момента на соответствующем участке эпюры .

Замечание. Положительный ответ при решении означает, что действительное перемещение совпадает с направлением единичной силы.

Отрицательный ответ означает, что действительное перемещение обратно направлению единичной силы.

1.4 Порядок выполнения расчета углового перемещения сечения «д» рамы с помощью формулы Симпсона

Расчет ведется в том же порядке, что и при вычислении вертикального перемещения, только вместо единичной силы в сечении, где необходимо найти угловое перемещение (в данной задаче – в сечении «Д»), прикладывается безразмерный единичный момент = 1. Дальнейшее вычисление углового перемещения Д (угла поворота сечения «Д») производится в соответствии с п.п. 1.3.8, 1.3.9, 1.3.10.

Источник

Определение прогибов и углов поворотов методом Мора

изображение Интеграл Мора сопромат

Интеграл Мора позволяет определять прогибы и углы поворота заданного сечения балки, используя интегральное исчисление. Хотя данный метод предпочтительнее метода начальных параметров, он неудобен из-за необходимости вычисления интеграла. Из интеграла Мора был получен удобное для практического применения правило Верещагина, при котором не нужно вычислять интегралы, а только нужно находить площадь и центр тяжести эпюр.

Получение формулы интеграла Мора

Рассмотрим балку, изображенную на рис. 15.6, а. Обозначим изображение Интеграл Мора сопромати изображение Интеграл Мора сопромат, соответственно, изгибающий момент и поперечную силу, возникающие в заданной балке от действующей на нее группы нагрузок P. Пусть требуется определить прогиб балки (изображение Интеграл Мора сопромат) в точке K.

изображение Интеграл Мора сопромат

Введем в рассмотрение вспомогательную балку (та же балка, но нагруженная только единичной силой либо единичным изгибающим моментом). Нагрузим ее только одной силой (рис. 15.6, б). Единичную силу приложим в точке K, где нужно определить прогиб.

Внутренние усилия, возникающие во вспомогательной балке, обозначим изображение Интеграл Мора сопромати изображение Интеграл Мора сопромат.

изображение Интеграл Мора сопромат

Воспользуемся теперь теоремой о взаимности работ, согласно которой работа внешних сил, приложенных к вспомогательной балке на соответствующих перемещениях заданной балки равна взятой с обратным знаком работе внутренних сил заданной балки на соответствующих перемещениях вспомогательной балки. Тогда .

При определении перемещений в балке, как правило, можно пренебрегать влиянием поперечной силы, ( не учитывать второе слагаемое).

Тогда, учитывая, что изображение Интеграл Мора сопромат, окончательно получим формулу интеграла Мора : изображение Интеграл Мора сопромат.

Определение перемещений по формуле интеграла Мора часто называют определением перемещений методом Мора , а саму формулу – интегралом Мора .

Входящие в интеграл Мора изгибающие моменты берутся в произвольном поперечном сечении и поэтому представляют собой аналитические функции от текущей координаты z.

Читайте также:  Звуки издаваемые больной морской свинкой

Заметим, что если мы хотим в этой же точке K определить угол поворота поперечного сечения (изображение Интеграл Мора сопромат), то нам необходимо к вспомогательной балке приложить не единичную силу, а единичный момент изображение Интеграл Мора сопромат(рис. 15.6, в).

порядок вычисления перемещений методом Мора:

· к вспомогательной балке в той точке, где требуется определить перемещение, прикладываем единичное усилие. При определении прогиба прикладываем единичную силу изображение Интеграл Мора сопромат, а при определении угла поворота – единичный момент изображение Интеграл Мора сопромат;

· для каждого участка балки составляем выражения для изгибающих моментов заданной (изображение Интеграл Мора сопромат) и вспомогательной (изображение Интеграл Мора сопромат) балок;

· вычисляем интеграл Мора для всей балки по соответствующим участкам;

· если вычисленное перемещение имеет положительный знак, то это означает, что его направление совпадает с направлением единичного усилия. Отрицательный знак указывает на то, что действительное направление искомого перемещения противоположно направлению единичного усилия.

Вычисление интеграла Мора пример

Пусть для шарнирно опертой балки постоянной изгибной жесткости изображение Интеграл Мора сопромат, длиной l, нагруженной равномерно распределенной нагрузкой интенсивностью q (рис. 15.7, а), требуется определить прогиб посредине пролета (изображение Интеграл Мора сопромат) и угол поворота на левой опоре (изображение Интеграл Мора сопромат).

определение прогиба с помощью интеграла Мора

изображение Интеграл Мора сопромат

В том месте, где нам нужно определить прогиб, к вспомогательной балке прикладываем единичную силу (рис. 15.7, б).

изображение Интеграл Мора сопроматЗаписываем выражения для изгибающих моментов для каждого из двух участков (изображение Интеграл Мора сопромат) заданной и вспомогательной балок:

изображение Интеграл Мора сопромат

.

изображение Интеграл Мора сопромат

.

Вычисляем интеграл Мора . Учитывая симметрию балки, получим:

изображение Интеграл Мора сопромат

.

Определение угла поворота методом Мора

изображение Интеграл Мора сопромат

Нагружаем вспомогательную балку единичным моментом , прикладывая его в том месте, где мы ищем угол поворота (рис. 15.7, в).

изображение Интеграл Мора сопромат

Записываем выражения для изгибающих моментов в заданной и вспомогательной балках только для одного участка ():

изображение Интеграл Мора сопромат

;

изображение Интеграл Мора сопромат

.

Тогда интеграл Мора будет иметь вид:

изображение Интеграл Мора сопромат

.

изображение Интеграл Мора сопромат

Положительный знак в выражении для угла поворота поперечного сечения балки указывает на то, что поворот сечения происходит по направлению единичного момента .

Источник

Метод Мора. Интеграл Мора

Теорема Кастельяно дала нам возможность определять перемещения. Эту теорему используют для отыскания перемещений в пластинках, оболочках. Однако, вычисление потенциальной энергии громоздкая процедура и мы сейчас наметим более простой и наиболее общий путь определения перемещений в стержневых системах.

Пусть задана произвольная стержневая система и нам нужно определить в ней перемещение точки по направлению , вызванное всеми силами системы —

Т.к. в общем случае в системе нет силы, приложенной по направлению искомого перемещения, то воспользоваться теоремой Кастельяно нельзя. Добавим к числу прочих сил силу , приложенную к точке и действующую в направлении . Тогда внутренние силовые факторы в системе можно выразить

Читайте также:  Можно ли держать морских свинок мальчика и девочку вместе

, где — внутренние силовые факторы в системе от действующих сил;

— внутренние силовые факторы от силы .

Внесем эти выражения в (3)

По теореме Кастельяно:

Учтя, что

получаем выражение:

называемое интегралом Мора.

Для того, чтобы определить перемещение с помощью метода Мора, необходимо:

1) Определить внутренние силовые факторы в системе от заданных сил.

2) Приложить по направлению искомого перемещения единичную обобщенную силу (единичную силу для определения линейного перемещение, пару сил с моментом равным единице для определения углового перемещения и определить внутренние силовые факторы от единичной силы.

3) Подставить полученные ранее выражения в интеграл Мора и определить перемещение.

Для систем, работающих на изгиб: балок, рам, влияние нормальных сил на величину перемещения незначительно и интеграл Мора в этом случае выглядит:

Источник

Перемещения при изгибе

Как отмечалось ранее, деформацией при изгибе является искривление продольной оси балки.

Вследствие этого искривления, точки и поперечные сечения балки получают линейные и угловые перемещения.

Рассмотрим на примере простой консольной балки.

Линейные перемещения

Отметим в произвольном месте балки точку K и приложим к свободному концу консоли сосредоточенную силу F.

Под действием этой силы балка изогнется, и точка K переместится в новое положение K’.

Очевидно, что перемещение точки K произойдет, не строго вертикально, поэтому разложим его на две составляющие:
вертикальное перемещение по оси y, называемое прогибом балки в т. K (yK)

и горизонтальное (осевое) смещение точки вдоль горизонтальной оси — zK

Практические расчеты показывают, что осевые смещения как правило, несоизмеримо меньше вертикальных перемещений (например, в данном случае zK >

Интеграл Мора

Интеграл Мора относится к энергетическим методам расчета перемещений.

В отличие от МНП позволяет определять линейные и угловые перемещения для любых систем.
Подробнее >>

Способ Верещагина

Данный способ расчета перемещений представляет собой графическую интерпретацию интеграла Мора, особенностью которой является «перемножение эпюр» грузовой и единичных схем.

Подробнее >>

Метод интегрирования дифференциального уравнения упругой линии балки

Непосредственное интегрирование дифференциального уравнения упругой линии

является одним из наиболее универсальных способов расчета перемещений в балках. Может применяться без ограничений к балкам любой формы.

По результатам расчета перемещений сечений балки строится линия изогнутой оси балки (либо эпюра прогибов), с указанием числовых значений прогибов и углов наклона в характерных сечениях.

Эти вычисления и построения необходимы для проверки балок на жесткость.

Источник

Оцените статью