- Определение прогибов и углов поворотов методом Мора
- Получение формулы интеграла Мора
- порядок вычисления перемещений методом Мора:
- Вычисление интеграла Мора пример
- определение прогиба с помощью интеграла Мора
- Определение угла поворота методом Мора
- 1.6. Графический способ вычисления интеграла Мора – способ Верещагина
- Глава 2. Статически неопределимые балки
- 2.1. Общие понятия
- 4. Интеграл Мора для вычисления перемещений
- Приравниваем
- 5. Частные случаи записи интеграла Мора
- 6. Порядок определения перемещений по интегралу Мора
- 7. Правило Верещагина для вычисления интеграла Мора («перемножение» эпюр)
Определение прогибов и углов поворотов методом Мора
Интеграл Мора позволяет определять прогибы и углы поворота заданного сечения балки, используя интегральное исчисление. Хотя данный метод предпочтительнее метода начальных параметров, он неудобен из-за необходимости вычисления интеграла. Из интеграла Мора был получен удобное для практического применения правило Верещагина, при котором не нужно вычислять интегралы, а только нужно находить площадь и центр тяжести эпюр.
Получение формулы интеграла Мора
Рассмотрим балку, изображенную на рис. 15.6, а. Обозначим и
, соответственно, изгибающий момент и поперечную силу, возникающие в заданной балке от действующей на нее группы нагрузок P. Пусть требуется определить прогиб балки (
) в точке K.
Введем в рассмотрение вспомогательную балку (та же балка, но нагруженная только единичной силой либо единичным изгибающим моментом). Нагрузим ее только одной силой (рис. 15.6, б). Единичную силу приложим в точке K, где нужно определить прогиб.
Внутренние усилия, возникающие во вспомогательной балке, обозначим и
.
Воспользуемся теперь теоремой о взаимности работ, согласно которой работа внешних сил, приложенных к вспомогательной балке на соответствующих перемещениях заданной балки равна взятой с обратным знаком работе внутренних сил заданной балки на соответствующих перемещениях вспомогательной балки. Тогда .
При определении перемещений в балке, как правило, можно пренебрегать влиянием поперечной силы, ( не учитывать второе слагаемое).
Тогда, учитывая, что , окончательно получим формулу интеграла Мора :
.
Определение перемещений по формуле интеграла Мора часто называют определением перемещений методом Мора , а саму формулу – интегралом Мора .
Входящие в интеграл Мора изгибающие моменты берутся в произвольном поперечном сечении и поэтому представляют собой аналитические функции от текущей координаты z.
Заметим, что если мы хотим в этой же точке K определить угол поворота поперечного сечения (), то нам необходимо к вспомогательной балке приложить не единичную силу, а единичный момент
(рис. 15.6, в).
порядок вычисления перемещений методом Мора:
· к вспомогательной балке в той точке, где требуется определить перемещение, прикладываем единичное усилие. При определении прогиба прикладываем единичную силу , а при определении угла поворота – единичный момент
;
· для каждого участка балки составляем выражения для изгибающих моментов заданной () и вспомогательной (
) балок;
· вычисляем интеграл Мора для всей балки по соответствующим участкам;
· если вычисленное перемещение имеет положительный знак, то это означает, что его направление совпадает с направлением единичного усилия. Отрицательный знак указывает на то, что действительное направление искомого перемещения противоположно направлению единичного усилия.
Вычисление интеграла Мора пример
Пусть для шарнирно опертой балки постоянной изгибной жесткости , длиной l, нагруженной равномерно распределенной нагрузкой интенсивностью q (рис. 15.7, а), требуется определить прогиб посредине пролета (
) и угол поворота на левой опоре (
).
определение прогиба с помощью интеграла Мора
В том месте, где нам нужно определить прогиб, к вспомогательной балке прикладываем единичную силу (рис. 15.7, б).
Записываем выражения для изгибающих моментов для каждого из двух участков (
) заданной и вспомогательной балок:
.
.
Вычисляем интеграл Мора . Учитывая симметрию балки, получим:
.
Определение угла поворота методом Мора
Нагружаем вспомогательную балку единичным моментом , прикладывая его в том месте, где мы ищем угол поворота (рис. 15.7, в).
Записываем выражения для изгибающих моментов в заданной и вспомогательной балках только для одного участка ():
;
.
Тогда интеграл Мора будет иметь вид:
.
Положительный знак в выражении для угла поворота поперечного сечения балки указывает на то, что поворот сечения происходит по направлению единичного момента .
Источник
1.6. Графический способ вычисления интеграла Мора – способ Верещагина
Упрощение операции интегрирования основано на том, что эпюры от единичных усилий на прямолинейных участках оказываются линейными. Рассмотрим эту процедуру применительно к участку балки. На рис.1.16 сверху показан участок балки с эпюрой Мробщего вида, а внизу эпюра, представляющая линейную функцию. Преобразуем интеграл Мора
(а)
с учётом этой особенности. Как видно из верхнего чертежа, Мрdx = dω, а из нижнего чертежа имеем. Если кроме того считать, что жёсткостьEIна протяжении участка постоянна, вместо (а) будем иметь
. (б)
Интеграл представляет собой статический момент площади эпюрыМротносительно осиу. Его можно записать иначе
Sy = ω ∙ xc ,
где ω– площадь этой эпюрыМр;
хс– координата центра тяжести эпюрыМр.
Отметив на нижней эпюре соответствующую ординату и обозначив её буквой m, будем иметь
xctg α = m.
В результате подстановки этих выражений в (б) получим
. (в)
Если балка имеет несколько участков по длине, формула Верещагина будет иметь вид
, (1.27)
где ∆ – обобщённое перемещение (либо прогиб υ, либо угол поворота θ);
ωi– площадь эпюры моментов от внешней нагрузки (грузовой эпюры);
mi– ордината единичной эпюры под центром тяжести грузовой эпюры;
n– число участков по длине балки.
При пользовании этой формулой надо уметь вычислять площади и координаты центров тяжести основных фигур: прямоугольника, прямолинейного треугольника и криволинейного треугольника. Минимально необходимые справочные данные приведены в табл.1.1. Процедуру графического вычисления называют «перемножением» эпюр.
В случае, если эпюра Мртоже линейная, операция перемножения обладает свойством коммутативности: безразлично, умножается ли площадь грузовой эпюры на ординату единичной или площадь единичной на ординату грузовой.
Встречающиеся на практике эпюры могут быть, как правило, разбиты на простые фигуры, приведённые в табл.1.1.
Эпюры Мри
Примечание: параболы – квадратные.
В качестве примера рассмотрим уже рассчитанную балку на рис.1.13. Чтобы построить эпюры Мр и , можно не определять опорные реакции: достаточно сосчитать момент на опореВ от нагрузки на консоли, построить эпюру на консоли, а затем соединить прямой линией значение М на опоре В с нулём на опоре А (рис.1.17).
В соответствии с формулой (1.27)
.
Конечно, результат получился такой же, что и при интегрировании по формуле Мора, но с меньшими затратами труда.
Глава 2. Статически неопределимые балки
2.1. Общие понятия
Изложенные в предыдущей главе методы определения перемещений широко применяются в расчётах статически неопределимых балок. Если при проектировании длинных балок (мостов, валов турбин) условия прочности и (или) жёсткости не выполняются, можно увеличить сечение балки, а можно поставить дополнительные опоры в пролёте (рис.2.1,б). Второй путь очень часто оказывается предпочтительным, так как позволяет, не увеличивая вес конструкции, сделать её более жёсткой.
Балка с промежуточными опорами становится статически неопределимой, так как трёх уравнений статики уже недостаточно для определения пяти неизвестных реакций.
Напомним, что простую статически неопределимую систему, образованную из стержней, работающих на растяжение-сжатие, мы рассматривали в разделе 2.5 первой части курса. Дополнительное уравнение для определения продольных сил в стержнях – уравнение совместности деформаций – было получено из рассмотрения схемы деформирования системы. Аналогичным по существу методом рассчитываются статически неопределимые балки.
Степень статической неопределимости определяется числом «лишних» связей. Балка на рис.2.1,б имеет две «лишних» промежуточных опоры – их можно удалить без ущерба для равновесия. Степень статической неопределимости этой балки равна двум.
Источник
4. Интеграл Мора для вычисления перемещений
Вывод формулы проводится для случая плоского изгиба, соответственно учитывается только изгибающий момент . В общем случае нагружения рассуждения аналогичны.
Задана произвольная упругая система, загруженная силами . Требуется определить перемещение произвольной точки
в заданном направле-
нии .
Для вывода формулы кроме заданной рассмотрим вспомогательную единичную систему, которая представляет собой заданную упругую систему (рис. 105), к которой по направлению искомого перемещения приложена единичная сила .
Введем обозначения:
изгибающий момент —
работа внешних сил —
—
изгибающий момент —
работа силы —
—
По первому свойству упругих систем справедливы равенства:
Загрузим систему последовательно сначала единичной силой , а затем, не снимая ее, заданными силами
. Из равенства энергии и работы после двух нагружений можно найти перемещение
.
Работа после первого нагружения ,
после второго нагружения ,
суммарная ,
Изгибающий момент после двух нагружений
Вычисляем
Приравниваем
;
По аналогии можно вывести формулу интеграла Мора для всех случаев нагружения.
5. Частные случаи записи интеграла Мора
При расчете разных упругих систем учитывают соответствующие силовые факторы, поэтому используют разные формы записи интегралов Мора.
1. Для шарнирных стержневых систем:
2. Для плоских балок, рам и кривых брусьев
3. Для пространственных систем
6. Порядок определения перемещений по интегралу Мора
Для определения перемещений надо рассмотреть заданную и единичную системы. При определении линейного перемещения по направлению искомого перемещения прикладывается единичная сила, а при определении угла поворота сечения – единичный момент.
ычерчиваем заданную и вспомогательную системы (рис. 106), разбиваем их на участки. Границы участков в обеих системах должны совпадать. Для двух систем по участкам записываем выражения силовых факторови составляем интегралы Мора, вычислив которые, получим величину искомого перемещения.
Участок :
Участок
:
;
7. Правило Верещагина для вычисления интеграла Мора («перемножение» эпюр)
Интеграл Мора содержит силовые факторы от заданной нагрузки и единичных сил. Метод Верещагина основан на том, что эпюра от единичной силы и момента всегда прямолинейна, никогда не бывает параболы. Жесткость по участкам должна быть постоянной, чтобы ее можно было вынести за знак интеграла.
Вывод проводим на примере эпюр изгибающих моментов (рис. 107), но результат справедлив для любых эпюр, из которых одна линейная.
Постановка задачи: на участке балки с постоянной жесткостью
заданы эпюры
и
. Эпюра
имеет произвольное очертание, эпюра
— прямая линия без изломов.
Требуется вычислить интеграл
Получено выражение, позволяющее вычислять интеграл Мора геометрически. Этот способ вычисления называется методом Верещагина.
Правило: Чтобы вычислить интеграл Мора по способу Верещагина нужно построить эпюры подинтегральных функций и
, а затем площадь эпюры
, обозначаемую
, умножить на ординату с эпюры
расположенную под центром тяжести площади
, обозначенную —
.
Примечание: Если обе «перемножаемые» эпюры прямолинейные, то, можно, наоборот, площадь брать с эпюры , а ординату с эпюры
.
.
Источник