Сера крупнейшие бассейны мира

Сера в природе

Сера (Sulfur) является элементом периодической системы химических элементов и относится к группе халькогенов. Данный элемент является активным участником образования многих кислот и солей. Водородные и кислотные соединения содержат серу, как правило, в составе различных ионов. Большое количество солей, в состав которых входит сера, практически не растворяются в воде.

Сера в природе является достаточно распространенным элементом. По своему химическому содержанию в земной коре ей присвоен шестнадцатый номер, по нахождению в водоемах – шестой. Она может встречаться как в свободном, так и в связанном состоянии.

К наиболее важным природным минералам элемента относятся: железный колчедан (пирит) — FeS2, цинковая обманка (сфалерит) – ZnS, галенит – PbS, киноварь – HgS, антимонит — Sb2S3. Также шестнадцатый элемент периодической системы встречается в составе нефти, природного угля, природных газов, а также сланцев. Нахождение серы в водной среде представляется сульфат-ионами. Именно ее наличие в пресной воде является причиной постоянной жесткости. Также она является одним из важнейших элементов жизнедеятельности высших организмов, является частью структуры многих белков, а также концентрируется в волосах.

Таблица 1. Свойства серы

Кристаллическая решётка простого вещества

Характеристика Значение
Свойства атома
Название, символ, номер Сера / Sulfur (S), 16
Атомная масса ( молярная масса) [32,059; 32,076][комм. 1][1] а. е. м. (г/моль)
Электронная конфигурация [Ne] 3s2 3p4
Радиус атома 127 пм
Химические свойства
Валентный радиус 102 пм
Радиус иона 30 (+6e) 184 (-2e) пм
Электроотрицательность 2,58 (шкала Полинга)
Электродный потенциал 0
Степень окисления +6, +4, +2, +1, 0, -1, −2
Энергия ионизации (первый электрон) 999,0 (10,35) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 2,070 г/см³
Температура плавления 386 К (112,85 °С)
Температура кипения 717,824 К (444,67 °С)
Уд. теплота плавления 1,23 кДж/моль
Уд. теплота испарения 10,5 кДж/моль
Молярная теплоёмкость 22,61[2] Дж/(K·моль)
Молярный объём 15,5 см³/моль
Структура решётки орторомбическая
Параметры решётки a=10,437 b=12,845 c=24,369 Å
Прочие характеристики
Теплопроводность (300 K) 0,27 Вт/(м·К)
Номер CAS 7704-34-9

Серная руда

Нельзя сказать о том, что свободное состояние серы в природе является частым явлением. Самородная сера встречается довольно редко. Зачастую она является одной из составляющих некоторых руд. Серной рудой называется порода, в состав которой входит самородная сера. Серные вкрапления в породах могут образовываться вместе с сопутствующими породами или позже них. Время их образования влияет на направление поисковых и разведочных работ. Специалисты выделяют несколько теорий образования серы в рудах.

  1. Теория сингенеза. Согласно данной теории сера и вмещающие породы были образованы одновременно. Местом их формирования были мелководные бассейны. Сульфаты, содержащиеся в воде, с помощью особых бактерий были восстановлены до сероводорода. Далее происходило его поднятие вверх до окислительной зоны, в которой сероводород окислялся до элементарной серы. Она опускалась на дно, оседая в иле, который через время превращался в руду.
  2. Теория эпигенеза, которая утверждает, что образование вкраплений серы происходило позже основных пород. В соответствии с данной теорией считается, что происходило проникновение подземных вод в толщи пород, в результате чего воды обогащалась сульфатами. Далее данные воды соприкасались с месторождениями нефти или газа, что приводило к восстановлению ионов сульфатов с помощью углеводородов до сероводорода, который, поднимаясь к поверхности и окисляясь, выделял самородную серу в пустотах и трещинах пород.
  3. Теория метасоматоза. Данная теория является одной из подвидов теории эпигенеза. В настоящее время она все чаще находит подтверждения. Ее суть заключается в превращении гипса (CaSO4-H2O) и ангидрита (CaSO4) в серу и кальцит (СаСО). Теорию предложили два ученых Миропольский и Кротов еще в первой половине двадцатого века. Спустя несколько лет было найдено месторождение Мишрак, которое подтверждало образование серы именно таким путем. Однако, до настоящего времени остается неясным сам процесс превращения гипса в серу и кальцит. В связи с этим, теория метасоматоза не является единственно правильной. Кроме этого, сегодня на планете есть озера, имеющие сингенетические отложения серы, однако, в иле не обнаружены гипс или ангидрит. К таким озерам относится Серное озеро, расположенное вблизи Серноводска.

Таким образом, однозначной теории происхождения серных вкраплений в рудах не существует. Образование вещества во многом зависит от условий и явлений, протекающих в земных недрах.

Месторождения серы

Сера добывается в местах локализации серной руды – месторождениях. По некоторым данным, мировые запасы серы составляют порядка 1,4 миллиардов тонн. На сегодняшний день месторождения серы найдены во многих уголках Земли – в Туркмении, в США, Поволжье, вблизи левых берегов Волги, которые пролегают от Самары и т.д. Иногда полоса породы может распространяться на несколько километров.

Большими серными запасами славятся Техас и Луизиана. Отличающиеся своей красотой серные кристаллы также располагаются в Романье и Сицилии (Италия). Родиной моноклинной серы считается остров Вулькано. Также залежами шестнадцатого элемента периодической системы Менделеева славится Россия, в частности Урал.

Серные руды классифицируются в соответствии с количеством содержащейся в них серы. Так, среди них различают богатые руды (от 25% серы) и бедные (около 12% вещества). Серные месторождения, в свою очередь, распределяются по следующим типам:

  1. Стратиформные месторождения (60%). Данный тип месторождений связан с сульфатно-карбонатными толщами. Рудные тела располагаются непосредственно в сульфатных породах. Они могут достигать в размере сотен метров и иметь мощность в несколько десятков метров;
  2. Солянокупольные месторождения (35%). Для данного типа характерны серные залежи серого цвета;
  3. Вулканогенные (5%). К этому типу относятся месторождения, образованные вулканами молодой и современной структуры. Форма рудного элемента, залегающего в них, пластообразная или линзовидная. Такие месторождения могут содержать порядка 40% серы. Они характерны для Тихоокеанского вулканического пояса.

Добыча серы

Сера добывается одним из нескольких возможных способов, выбор которого зависит от условий залегания вещества. Основными являются всего два – открытый и подземный.

Открытый способ добычи серы является наиболее популярным. Весь процессы добычи вещества данным способом начинается со снятия значительного количества породы экскаваторами, после чего происходит дробление самой руды. Полученные рудные глыбы транспортируются на фабрику для дальнейшего обогащения, после чего отравляются на предприятие, где происходит плавка серы и получения вещества из концентратов.

Кроме этого, также иногда применяется метод Фраша, который заключается в выплавке серы еще под землей. Данный способ целесообразно использоваться в местах глубокого залегания вещества. После расплавки под землей, происходит выкачивание вещества наружу. Для этого формируются скважины, являющиеся основным инструментом для выкачки расплавленного вещества. Метод основан на легкости плавления элемента и небольшой его плотности.

Существует также метод разделения на центрифугах. Однако, он отличается своим одним большим недостатком, основанным на том, что сера, полученная с помощью такого метода, имеет много примесей и требует дополнительной очистки. В результате, метод считается достаточно затратным.

Кроме указанных методов добыча серы в отдельных случаях может также производиться:

  • скважинным методом;
  • пароводяным методом;
  • фильтрационным методом;
  • термическим методом;
  • экстракционным методом.

Стоит отметить, что вне зависимости от метода, используемого во время извлечения вещества из земных недр, необходимо особое внимание уделять технике безопасности. Это связано с присутствием вместе с залежами серы сероводорода, который является ядовитым для человека и способен воспламеняться.

Источник

Месторождения серы

В природных условиях сера находится как в виде различных соединений — сульфатов, сульфидов и др., так и в самородном состоянии. Самородная сера бывает кристаллической и аморфной. Обычно она содержит изоморфные примеси Se, Те, As, Т1, а также механические примеси глинистых минералов, гипса, органических веществ и др. Значительные количества серы в виде сероводорода, сернистого ангидрита и других органических и неорганических соединений находятся в вулканических газах, водах минеральных источников, в сырой нефти и природном газе.

Подавляющая часть серы (около 80 %) используется в химической промышленности при производстве серной кислоты, необходимой для получения фосфорных удобрений. Серная кислота используется при переработке урановых руд для получения ряда других кислот, красителей, пластмасс. В нефтяной промышленности ее применяют для очистки нефтепродуктов. В элементном виде сера используется в резиновой, бумажной, текстильной промышленности, для производства взрывчатых веществ, спичек, в пищевой промышленности и т. д.

Ежегодно в мире получают около 50 млн т серы — 33 % за счет переработки нефти и природного газа, 30 % — из месторождений самородной серы, 14 % — из газовых выбросов металлургических заводов, 16% — при переработке сульфидов, 6 % — из сульфатов.

Месторождения самородной серы являются одним из важнейших источников ее получения. Мировые запасы самородной серы, а также серы нефтяных и газовых месторождений оцениваются в 1,4 млрд т. Добыча серных руд ведется в открытых и подземных горных выработках, а также путем подземной выплавки (ПВС). В последнем случае в серные залежи по скважинам закачивается под давлением перегретая вода (150 — 160 °С), которая расплавляет серу (температура плавления серы 114— 119 °С) и выносит в расплавленном виде на поверхность.

Содержание серы колеблется от 5 — 12 % в бедных рудах до 25 % и более — в богатых.

Ведущими промышленными типами месторождений самородной серы являются стратиформный (60 % добычи), солянокупольный (35 %) и вулканогенный (5 %).

Стратиформные месторождения связаны с эвапоритовыми сульфатно-карбонатными толщами. Рудные тела в виде пластовых и пластообразных залежей мощностью до десятков метров и протяженностью до сотен метров залегают среди сульфатных пород или в толщах переслаивания сульфатных и карбонатных пород. Месторождения этого типа известны в Прикарпатье, США, Ираке, в Среднем Поволжье и др.

Солянокупольный тип широко развит в зоне Мексиканского залива на территории США и Мексики. Серные залежи приурочены к кепрокам соляных куполов, где ассоциируют с залежами нефти и газа.

Вулканогенные месторождения связаны с молодыми и современными наземными вулканами и формировались в посткальдерную стадию развития вулканов при гидротермальной переработке андезитовых толщ сернокислыми водами и газами. Рудные тела пластообразной, линзовидной формы, штокверки сложены сернистыми кварцитами, опалитами, алунитами. Содержание серы может достигать 40 %. Практически все промышленные месторождения этого типа расположены в пределах Тихоокеанского вулканического пояса.

Источник

Месторождения серы

Среди месторождений серы можно выделить следующие генетические типы: 1) магматические, 2) карбонатитовые, 3) скарновые, 4) гидротермальные и пневматолитовые, 5) вулканогенно-осадочные, 6) подземноводные и газонефтяные, 7) осадочные.

К магматическим месторождениям серы следует относить ликвационные медно-никелевые месторождения, сера в которых формирует сульфиды железа, меди, никеля, кобальта и других металлов и извлекается попутно при переработке руд цветных металлов. Примеры — Талнахское и другие месторождение в России, Сёдбери в Канаде.

К карбонатитовым месторождениям серы относятся редко встречаемые гипс-барит-флюоритовые, связанные с апикальными частями карбонатитовых комплексов. Сера извлекается из гипса. Пример — месторождение Амба-Донгар в Индии.

К скарновым месторождениям серы относятся медные и полиметаллические месторождения, сера которых также представлена сульфидами различных металлов: железа, меди, свинца, цинка и др. Извлекаются они попутно с получением металлов. Примеры — Турьинские медные рудники Урала, полиметаллические месторождения Кара- Мазара в Средней Азии.

Среди гидротермальных месторождений серы следует выделять плутоногенные и вулканогенные. К плутоногенным относятся медные н полиметаллические месторождения, сера которых формирует сульфиды железа и цветных металлов; извлекается она попутно. Примеры — полиметаллические месторождения Забайкалья. Среди гидротермальных вулканогенных месторождений выделяется ряд формаций. К этому типу следует относить формации самородной серы в вулканических образованиях. Это и метасоматические залежи (точнее, импрегнационно-метасоматические, так как часть серы формируется не путем замещения, а путем выполнения пустот) серы в приповерхностных зонах вулканических построек, преимущественно среди опалитов, и месторождения серных потоков и кратерных расплавов, а также месторождения, формирующиеся из серосодержащих газов и горячих вод непосредственно в поверхностных условиях.

Для импрегнационно-метасоматических месторождений, играющих ведущую роль в вулканогенной группе, характерна определенная метасоматическая зональность, при этом среди характерных пород здесь наблюдаются и сами серные руды — сероносные опалиты, и алунитовые породы, пропилиты и монтмориллонитизированные вулканиты. Примеры — Новое на Курильских островах, Мелитойваямское на Камчатке, ряд месторождений Японии. Этот тип месторождений возникает при воздействии сероносных газов и растворов на вулканические постройки, при этом интенсивно выщелачивается ряд металлов, в том числе железо и алюминий, а кремнезем остается и формирует существенно опаловые породы — опалиты.

Нередко наряду с самородной серой и серосодержащим минералом алунитом отмечается и сульфид серы — мельниковит. Месторождения серных потоков возникают при расплавлении ранее возникших серных залежей при активизации вулканов. Например, серный поток, вынесший 200 тыс. т серы, наблюдался в Японии на вулкане Сиеретоко-Иоцан. В некоторых вулканах в кратерах имеются серные расплавы (например, на островах Галапагос). Поверхностные небольшие месторождения серы, в том числе сульфуриты, формируются из серосодержащих вод и газов. Они известны на вулкане Менделеева и ряде вулканов Японии.

К вулканогенно-осадочным месторождениям серы относятся кратерно-озерные месторождения самородной серы, а также месторождения колчеданных руд, формирующиеся при поступлении сероносных вулканогенных гидротерм в морские бассейны. Примером кратерно-озерных месторождений служит одно из крупных месторождений Индонезии Телага Бодае. К колчеданным вулканогенно-осадочным месторождениям принадлежит ряд месторождений Испании и Португалии, играющих заметную роль в получении сульфидной серы. К этому типу можно отнести и некоторые месторождения цветных металлов, из руд которых сера извлекается как попутный компонент.

Существенное значение в добыче серы имеют подземноводные и газонефтяные месторождения серы. Подземно-водные месторождения возникают при метасоматическом замещении гипсов и ангидритов серокальцитовыми рудами. Процесс этот осуществляется на определенном расстоянии от поверхности земли, т. е. может начаться только после определенного уровня денудации, вызывающего приближение продуктивных горизонтов гипсов и ангидритов к поверхности. При этом существенную роль играют процессы эрозии, в частности деятельность древних долин, приближающих сульфатоносные слои к поверхности, а также наличие разрывных нарушений, облегчающих миграцию вод, в том числе подъем глубинных вод. К этому типу месторождений относятся наиболее крупные месторождения серы России, стран Ближнего Востока и др.

Разновидностью месторождений данного типа являются месторождения серы в кепроках соляных куполов. Кепроки, или остаточные шляпы, возникают при растворении верхних частей растущих: соляных куполов. Строение их зональное: непосредственно выше солей, в области фронта их растворения, представленного «соляным зеркалом», располагаются гипсы и ангидриты, выше — зона карбонатных пород, а над ней нередко отмечаются скопления глин, как наиболее труднорастворимого остатка соляной толщи. Осернению подвергаются породы зоны сульфатов кальция (см. рис. 30). Пример этого подтипа месторождений — месторождения серы Мексиканского залива.

В газовых месторождениях сера входит в состав сероводорода, который попутно извлекается при добыче природных горючих газов. Такие месторождения известны в Канаде, Франции, России (Оренбургские месторождения газа). Месторождения сернистых нефтей известны в ряде стран. Сера извлекается попутно при переработке нефти.

К осадочным месторождениям серы относятся гипсоангидритовые месторождения, из которых получают серу в ряде стран, а также колчедансодержащие каменные и бурые угли и скопления пирита и марказита в песчаниках и глинистых породах, в том числе в глинистых сланцах. Из угля соединения серы извлекают как в процессе обогащения углей, так и при получении кокса. Пример — Подмосковный буроугольный бассейн. Скопления, в том числе желваки железного колчедана, известны в песчано-глинистых отложениях ряда стран, в том числе Германия, Россия и др. Иногда отмечаются сплошные залежи колчеданов (не желваки или караваи), правда в таком случае не исключается эффузивно-осадочный генезис этих пластов и линз сплошных колчеданных руд.

В некоторых случаях отмечается формирование осадочных скоплений самородной серы, однако промышленные скопления этого типа пока не установлены.

Источник

Читайте также:  Мрия бассейн с подогревом
Оцените статью