Применение сообщающихся сосудов фонтан

Сообщающиеся сосуды

Тебе не раз приходилось пользоваться кофейником, чайником и садовой лейкой, но вряд ли ты знал, что эти предметы являются сообщающимися сосудами.

Сообщающиеся сосуды — это любые емкости, соединенные между собой. Самый простой пример сообщающихся сосудов — это две трубочки, которые соединены между собой резиновым шлангом.

Сообщающиеся сосуды в быту

Если у тебя дома есть стеклянный заварочный чайник, ты можешь наблюдать следующую картину. Если ты наклоняешь чайник, чай начинает выливаться тогда, когда доходит до края носика, при этом чай в носике и в самом чайнике находится на одном горизонтальном уровне, как бы ты чайник ни наклонял.

Главное правило сообщающихся сосудов

Неважно, какое количество сосудов соединены между собой — уровень жидкости во всех сосудах будет одинаковым. Более того, форма сосудов также не оказывает влияния на уровень жидкости.

Главное правило сообщающихся сосудов заключается в том, что уровни жидкости в них устанавливаются на одной высоте.

Однако это правило распространяется только на однородные жидкости. Если, например, в сосуд налить сначала воду, а потом масло, то жидкость в сообщающихся сосудах будет находиться на разных уровнях. В случае разных жидкостей все зависит от их плотности. Чем больше плотность, тем ниже уровень жидкости в одной из частей (колен) сообщающегося сосуда.

Что происходит в нашем организме, когда мы пьем? Как жидкость попадает к нам в рот? Оказывается, здесь наш организм работает по принципу сообщающихся сосудов. Когда мы хотим пить, мы открываем рот и подносим к нему стакан или бутылку с водой. В этот момент воздух во рту разрежается, легкие расширяются, и жидкость устремляется туда, где давление меньше.

Поэтому мы смело можем сказать, что мы пьем не только ртом, но и легкими.

По принципу сообщающихся сосудов устроены шлюзы на каналах и реках для прохождения судов. Шлюзовые камеры соединены подводным каналом. Когда подводный канал открывается, обе камеры становятся сообщающимися сосудами. При этом вода перетекает из камеры с высоким уровнем в камеру с низким. Как только уровень жидкости в обеих шлюзовых камерах выравнивается, ворота открываются, и судно может перемещаться из одной камеры в другую.

Артезианская скважина

Более сложный пример сообщающихся сосудов — артезианская скважина. Если скважину бурят в середине артезианского бассейна, то вода поднимается на поверхность земли по принципу сообщающихся сосудов.

Водонапорная башня

Водонапорная башня — еще один пример работы принципа сообщающихся сосудов. Бак для накопления воды устанавливается на большой высоте. От бака вниз идет множество труб в дома и квартиры каждого из нас. И когда мы открываем кран, то вода начинает течь.

Фонтан

Уникальные фонтаны Петергофа также являются сообщающимися сосудами. Уникальными их можно считать только лишь потому, что вода поднимается на довольно большую высоту без использования насосов. Это стало возможным благодаря учету уровней воды в каналах и фонтанах.

Источник

Закон сообщающихся сосудов и его применение.

Сообщающиеся сосуды – это сосуды, соединенные между собой ниже уровня жидкости в каждом из сосудов. Таким образом жидкость может перемещаться из одного сосуда в другой.

Перед тем как понять принцип действия сообщающихся сосудов и варианты их использования необходимо определиться в понятиях, а точнее разобраться с основным уравнением гидростатики.

Содержание статьи

Закон сообщающихся сосудов

Итак, сообщающиеся сосуды имеют одно общее дно и закон о сообщающихся сосудах гласит:

Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.

Для иллюстрации этого закона и возможностей его применения начнем с рассмотрения основного уравнения гидростатики.

Основное уравнение гидростатики

Читайте также:  Как с шланга сделать фонтан

где P1 – это среднее давление на верхний торец призмы,
P – давление на нижний торец,
g – ускорение свободного падения,
h – глубина погружения призмы под свободной поверхностью жидкости.

ρgh – сила тяжести (вес призмы).

Звучит уравнение так:

Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.

Из написанного выше уравнения следует, что если давление, например в верхней точке изменится на какую-то величину ΔР, то на такую же величину изменится давление в любой другой точке жидкости

Доказательство закона сообщающихся сосудов

Возвращаемся к разговору про сообщающиеся сосуды.

Предположим, что имеются два сообщающихся сосуда А и В, заполненные различными жидкостями с плотностями ρ1 и ρ2. Будем считать, что в общем случае сосуды закрыты и давления на свободных поверхностях жидкости в них соответственно равны P1 и P2.

Пусть поверхностью раздела жидкостей будет поверхность ab в сосуде А и слой жидкости в этом сосуде равен h1. Определим в заданных условиях уровень воды в сообщающихся сосудах – начнем с сосуда В.

Гидростатическое давление в плоскости ab, в соответствии с уравнение гидростатики

если определять его, исходя из известного давления P1 на поверхность жидкости в сосуде А.

Это давление можно определить следующим образом

где h2 – искомая глубина нагружения поверхности ab под уровнем жидкости в сосуде В. Отсюда выводим условие для определения величины h2

P1 + ρ1gh1 = P2 + ρ2gh2

В частном случае, когда сосуды открыты (двление на свободной поверхности равно атмосферному), а следовательно P1 = P2 = Pатм , имеем

т.е. закон сообщающихся сосудов состоит в следующем.

В сообщающихся сосудах при одинаковом давлении на свободных поверхностях высоты жидкостей, отсчитываемые от поверхности раздела, обратно пропорциональны плотностям жидкостей.

Свойства сообщающихся сосудов

Если уровень в сосудах одинаковый, то жидкость одинаково давит на стенки обоих сосудов. А можно ли изменить уровень жидкости в одном из сосудов.

Можно. С помощью перегородки. Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем так называемый подпор – давление столба жидкости.

Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд где её уровень ниже до тех пор пока высота жидкости в обоих сосудах не станет одинаковой.

В быту этот принцип используется например в водонапорной башне. Наполняя водой высокую башню в ней создают подпор. Затем открывают вентили, расположенные на нижнем этаже и вода устремляется по трубопроводам в каждый подключенный к водоснабжению дом.

Приборы основанные на законе сообщающихся сосудов

На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор представляет собой два сообщающихся сосуда – две вертикальные стеклянные трубки А и В, соединенные между собой изогнутым коленом С. Одна из вертикальных трубок заполняется исследуемой жидкостью, а другая жидкостью известной плотности ρ1 (например водой), причем в таких количествах, чтобы уровни жидкости в среднем колене находились на одной и той же отметке прибора 0.

Затем измеряют высоты стояния жидкостей в трубках над этой отметкой h1 и h2. И имея ввиду, что эти высоты обратно пропорциональны плотностям легко находят плотность исследуемой жидкости.

В случае, когда оба сосуде заполнены одной и той же жидкостью – высоты, на которые поднимется жидкость в сообщающихся сосудах, будут одинаковы. На этом принципе основано устройство так называемого водометного стекла А. Его применяют для определения уровня жидкости в закрытых сосудах, например резервуарах, паровых котлах и т.д.

Принцип сообщающихся сосудов заложен в основе ряда других приборов, предназначенных для измерения давления.

Применение сообщающихся сосудов

Простейшим прибором жидкостного типа является пьезометр, измеряющий давление в жидкости высотой столба той же жидкости.

Пьезометр представляет собой стеклянную трубку небольшого диаметра (обычно не более 5 мм), открытую с одного конца и вторым концом присоединяемую к сосуду, в котором измеряется давление.

Высота поднятия жидкости в пьезометрической трубке – так называемая пьезометрическая высота – характеризует избыточное давление в сосуде и может служить мерой для определения его величины.

Читайте также:  Установка основания для каркасных бассейнов

Пьезометр – очень чувствительный и точный прибор, но он удобен только для измерения небольших давлений. При больших давлениях трубка пьезометра получается очень длинной, что усложняет измерения.

В этом случае используют жидкостные манометры, в которых давление уравновешивается не жидкостью, которой может быть вода в сообщающихся сосудах, а жидкостью большей плотности. Обычно такой жидкостью выступает ртуть.

Так как плотность ртути в 13,6 раз больше плотности воды и при измерении одних и тех же давлений трубка ртутного манометра оказывается значительно короче пьезометрической трубки и сам прибор получается компактнее.

В случае если необходимо измерить не давление в сосуде, а разность давлений в двух сосудах или, например, в двух точках жидкости в одном и том же сосуде применяют дифференциальные манометры.

Сообщающиеся сосуды находят применение в водяных и ртутных приборах жидкостного типа, но ограничиваются областью сравнительно небольших давлений – в основном они применяются в лабораториях, где ценятся благодаря своей простоте и высокой точности.

Когда необходимо измерить большое давление применяются приборы основанные на механических принципах. Наиболее распространенный из них – пружинный манометр. Под действием давления пружина манометра частично распрямляется и посредством зубчатого механизма приводит в движение стрелку, по отклонению которой на циферблате показана величина давления.

Видео по теме

Ещё одним устройством использующим принцип сообщающихся сосудов хорошо знакомым автолюбителем является гидравлический пресс(домкрат). Конструктивно он состоит из двух цилиндров: одного большого, другого маленького. При воздействии на поршень малого цилиндра на большой передается усилие во столько раз большего давления во сколько площадь большого поршня больше площади малого.

Источник

«Фонтан как пример сообщающихся сосудов»
творческая работа учащихся по физике (7 класс)

«Фонтан как пример сообщающихся сосудов».Исследовательская работа по физике 7 класс

Скачать:

Вложение Размер
distantsionnyy_tur.docx 55.91 КБ

Предварительный просмотр:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ КРАСНОЯРСКОГО КРАЯ

Муниципальное образование г.Боготол

КРАЕВОЙ ФОРУМ «МОЛОДЕЖЬ И НАУКА»

Направление: Фундаментальные исследования, секция: физика и математика

« Фонтан как пример сообщающихся сосудов »

Муниципальное бюджетное учреждение

средняя общеобразовательная школа №4

Власова Татьяна Петровна

Муниципальное бюджетное учреждение

средняя общеобразовательная школа №4

С условиями Конкурса ознакомлен(-а) и согласен(-а) Организатор конкурса оставляет за собой право использовать конкурсные работы в некоммерческих целях и без денежного вознаграждения автора (авторского коллектива) при проведении просветительских кампаний, а также полное или частичное использование в методических, информационных, учебных и иных целях в соответствии с действующим законодательством РФ.

г. Красноярск 2019

Цель работы: Выяснить, как и почему работает фонтан, и от каких физических параметров зависит высота струи в фонтане.

  1. Теоретический – изучение первоисточников.
  2. Лабораторный – проведение эксперимента.
  3. Аналитический – анализ полученных результатов.
  4. Синтез – обобщение материалов теории и полученных результатов. Создание модели.

1.Бурмин Г. Штурм абсолютного нуля /Москва, «Детская литература», 1989г.

2.Кабардин О.Ф., Кабардина С.И., Шеффер Н.И. Факультативный курс физики /Москва, «Просвещение», 1982г.

4. «Энциклопедический словарь юного физика» Сост. В. А. Чуянов – 2- е М.: Педагогика, 1991 год- 336 стр.

5. Ф. Бублейников, И. Веселовский «Физика и опыт», М. Просвещение, 1970г.

Настоящая работа посвящена фонтанам, которые можно изготовить самим.

Актуальность выбранной темы

Применяем полученные знания по физике в практике.

Выбранная мною тема интересна и актуальна в настоящее время .Так как фонтаны, являются одним из основных предметов ландшафтного дизайна парковой зоны, источником воды в жаркое летнее время, а каждый уголок города становится более красивым и уютным с помощью фонтана. А люди практичные знают, что фонтан увлажняет воздух и к тому же работает как природный ионизатор.

Выяснить, как и почему работает фонтан, от каких физических параметров зависит высота струи в фонтане,как изменяется влажность с применением фонтана.

  1. Теоретический – изучение первоисточников.
  2. Лабораторный – проведение эксперимента.
  3. Аналитический – анализ полученных результатов.
  4. Синтез – обобщение материалов теории и полученных результатов. Создание модели.

1. Изучить материал о фонтанах: их видах и принципах действия.

2. Сконструировать макет фонтана и с его помощью провести опыты, объясняющие принцип работы фонтана.

3. Проанализировать полученную информацию и сделать выводы об устройстве и принципе работы фонтанов.

4.Проверить как влияет фонтан на микроклимат в комнате.

Фонтан – струя жидкости, газа, выбрасываемая вверх из трубы или отверстия силой давления . Первые фонтаны возникли в Древнем Египте и Месопотамии, о чем свидетельствуют изображения на древних надгробиях. Изначально они использовались не столько для красоты, сколько для полива выращиваемых культур и декоративных растений.

Современные фонтаны соревнуются в высоте. Фонтан короля Фахда расположенный на Красном море, поднимается на высоту 260 м, в хорошую погоду он может достичь высоты 318 м (для сравнения высота Эйфелевой башни 300м). В современных фонтанах значительную роль играют передовые технологии, новые изобретения.

Самый дорогой и большой фонтанный комплекс в мире – «Dubai Fountain”(Дубай Фонтан). Длина фонтана 275 м, а его площадь сравнима с площадью трех стандартных футбольных полей.

Со временем менялись эпохи и стили, а с ними и фонтаны, как их отражение. Но принцип работы фонтанов практически одинаков. Они работают по принципу сообщающихся сосудов . С начала 17 века фонтаны стали приводить в действие с помощью механических насосов, которые постепенно заменили паровые установки, а затем и электрические насосы.

Фонтаны бывают искусственные и естественные. К естественным относятся гейзеры, родники и артезианские воды.

Фонтаны бывают: водомётные, каскадные, механические, фонтаны-шутихи разной высоты, формы и у каждого есть свое название. Раньше все фонтаны были прямоточные, то есть работали напрямую от водопровода, сейчас применяется «оборотное» водоснабжение с использованием мощных насосов.

В основе работы самых простых фонтанов лежит свойство сообщающихся сосудов.

Сосуды, имеющие между собой сообщение или общее дно, называются сообщающимися. В жизни часто встречаются такие сосуды. Различные чайники, лейки, водомерные стекла при паровых котлах – все это примеры сообщающихся сосудов.

Свободные поверхности покоящейся жидкости в сообщающихся сосудах любой формы находятся на одном уровне. Вода, налитая в лейку, в чайник, заполняет и носик этих сосудов, и их расширенную часть до одинаковой высоты. Это происходит потому, что равные по высоте столбы одинаковой жидкости производят одинаковые давления (рис. 1, а).

Если жидкость в сообщающихся сосудах находится на разных уровнях (это можно сделать, поставив между сообщающимися сосудами перегородку или зажим и долив жидкость в один из сосудов; рис. 1, б), то создается напор жидкости. Напор показывает, какое давление производит вес столба жидкости высотой, равной разности уровней. Под действием этого давления жидкость, если убрать зажим, будет перетекать в тот сосуд, где уровень ее ниже, до тех пор, пока уровни не сравняются.

Существует несколько видов фонтанов, работа которых основана на свойстве сообщающихся сосудов.

Фонтан Герона (рис. 2).

Для эксперимента используют два сосуда с водой расположенных на разных уровнях соединенные между собой тонкими резиновыми трубочками и небольшой чашки. Для того чтобы фонтан заработал, в чашечку добавляют небольшое количество воды.

Нами был изготовлен фонтан, который представляет собой большой резервуар для воды, соединенный трубкой с резервуаром, демонстрирующим фонтан.

Для его изготовления мы использовали наши выводы после изучения теоретической части по вопросу «фонтаны»:

Для наблюдения подъема воды в виде фонтана необходимо создать разницу давлений в жидкости. Чем больше разница давлений, тем выше будет столб воды в струе фонтана.

Если поднять резервуар с водой над источником фонтана, то можно наблюдать струю, причем чем выше резервуар, тем выше струя фонтана, так как мы увеличиваем разницу давлений между верхним и нижним положением воды.

Но данный макет имеет недостаток, если в большом резервуаре закончится вода, то и закончится работа самого фонтана. Для длительной работы фонтана требуется наличие наноса.

№1 Проверить зависимость высоты струи в фонтане от взаимного расположения сообщающихся сосудов.

Оборудование: пластмассовая бутылка; трубка диаметром 5 мм.

Меняя высоту сосуда, при постоянном диаметре отверстия я измеряла высоту струи фонтана.

Источник

Оцените статью