Энергия морских течений.
Неисчерпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать в механическую и электрическую энергию с помощью турбин, погруженных в воду (подобно ветряным мельницам, «погруженным» в атмосферу).
Станции, генерирующие электроэнергию из подводных течений, по принципу работы схожи с ветровыми электростанциями, с одной лишь разницей, что лопасти генератора находятся под водой. Такие электростанции также дороги в строительстве и обслуживании. Не обходится без недостатков, таких как, например, негативные последствия для обитателей океана – строительство большого количества таких станций неминуемо повлияет на сами течения, в частности, смешение нижних и верхних слоев вод.
Энергия приливов и отливов.
Для использования приливной энергии наиболее подходящими можно считать такие места на морском побережье, где приливы имеют большую амплитуду, а контур и рельеф берега позволяют устроить большие замкнутые «бассейны».
Приливная электростанция (ПЭС) — особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. Для этого сооружаются плотины, образуется водоем — бассейн приливной электростанции и при достаточной высоте прилива создается напор. Сила падения воды, проходящей через гидротурбины, вращает их и приводит в движение генераторы электрического тока.
Преимуществами ПЭС является сравнительная экологичность и низкая себестоимость производства энергии. Недостатками — во-первых, высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в составе энергосистемы, располагающей достаточной мощностью электростанций других типов. Во-вторых, недостаток приливных электростанции в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки.. Они нарушают нормальный обмен соленой и пресной воды и тем самым — условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения.
Энергия волн.
В настоящее время в ряде стран, и в первую очередь в Англии, ведутся интенсивные работы по использованию энергии морских волн. Британские острова имеют очень длинную береговую линию, во многих местах море остается бурным в течение длительного времени. По оценкам ученых, за счет энергии морских волн в английских территориальных водах можно было бы получить мощность до 120 ГВт, что вдвое превышает мощность всех электростанций, принадлежащих Британскому Центральному электроэнергетическому управлению.
Один из проектов использования морских волн основан на принципе колеблющегося водяного столба. В гигантских «коробах» без дна и с отверстиями вверху под влиянием волн уровень воды то поднимается, то опускается. Столб воды в коробе действует наподобие поршня: засасывает воздух и нагнетает его в лопатки турбин. Главную трудность здесь составляет согласование инерции рабочих колес турбин с количеством воздуха в коробах, так чтобы за счет инерции сохранялась постоянной скорость вращения турбинных валов в широком диапазоне условий на поверхности моря.
Источник
4.6 Энергия приливов
Приливы – это результат гравитационного взаимодействия Земли с Луной и Солнцем. Приливообразующая сила Луны в данной точке земной поверхности определяется как разность местного значения силы притяжения Луны и центробежной силы от вращения системы Земля–Луна вокруг общего центра тяжести.
В результате на поверхности Земли возникают приливные колебания уровня в огромных океанах планеты. Основные периоды этих колебаний – суточные продолжительностью около 24 ч и полусуточные – около 12 ч 25 мин.
Во время приливов и отливов перемещение водных масс образует приливные течения. Скорость этих течений в прибрежных проливах и между островами достигает примерно 5 м/с.
В открытом море подъем водной поверхности во время прилива не превышает 1 м. В устьях рек, проливах и постепенно суживающихся заливах приливы достигают значительно большей величины. Приливы в заливе Фанди (Атлантическое побережье Канады), наибольшие в мире, достигают высоты 17,3 м. В Европе высокие приливы происходят в устье реки Северн (Англия) – 14,5 м и на Атлантическом поборежье Франции – 13,5 м.
В России наибольшие высоты приливов наблюдаются в Пенжинской губе (14,5 м) и Тугурском заливе Охотского моря (10 м), а также в Мезенском заливе Белого моря (10 м). На Мурманском побережье Баренцева моря высота прилива достигает 7,2 м [1].
На приливо-отливные явления существенное влияние оказывает ветер. Если ветер дует с моря, он нагоняет воду к берегу и высота прилива увеличивается. При ветре, дующем с суши, уровень прилива понижается.
Каждый год наиболее высокие приливы происходят тогда, когда Луна и Солнце находятся почти на одной линии. Их суммарное гравитационное взаимодействие увеличивает объем перемещаемой океанской воды.
4.6.2 Приливные электростанции (пэс)
Поднятую во время прилива на максимальную высоту воду можно отделить от моря плотиной. В результате образуется приливный бассейн.
Максимальная мощность, которую можно получить, пропуская воду через турбины, в одном цикле прилив – отлив определяется по уравнению:
где ρ – плотность воды; g – ускорение силы тяжести; S – площадь приливного бассейна; R – высота прилива.
Следовательно, для использования приливной энергии подходят такие места морского побережья, где приливы имеют большую высоту, а рельеф берега дает возможность соорудить большие замкнутые бассейны.
Мощность, снимаемая с 1 м 2 площади поперечного сечения потока
где U – средняя скорость приливного течения.
Скорость приливного течения меняется во времени. Для устройства, работающего при прямом и обратном приливном течении имеющем скорость U=5 м/с
q=0,1·1025·5 3 =12800 Вт/м 2 13 кВт/м 2
Если перекрыть плотиной площадь залива S=1000 м 2 , можно получить среднюю мощность электростанции около 13 МВт.
Принцип действия приливных электростанций (ПЭС), работающих при приливе и отливе, заключается в следующем. В устье реки или заливе строится плотина. В корпусе плотины устанавливаются гидроагрегаты. За плотиной образуется приливный бассейн. Во время прилива вода вращает турбоагрегаты и наполняет приливный бассейн. При отливе поток воды возвращается из бассейна в море, вращая турбины в обратном направлению. Схема работы приливной электростанции представлена на рис. 5.1.
Рис. 5.1. Схема работы приливной электростанции
Экономически оправдано строительство ПЭС в районах с приливными колебаниями уровня моря не менее 4 м. Мощность ПЭС зависит от характера прилива, объема и площади приливного бассейна и числа установленных гидроагрегатов.
Эффективность ПЭС значительно повысилась в связи с созданием капсульных турбин, действующих при приливе и отливе. ПЭС двухстороннего действия может вырабатывать электроэнергию в течение 4…5 часов с перерывами в 1…2 часа четыре раза в сутки.
При совпадении времени прилива и отлива с периодом наибольшего потребления энергии ПЭС работает в турбинном режиме, а при совпадении времени прилива и отлива с наименьшим потреблением энергии турбины ПЭС или отключаются, или работают в насосном режиме, наполняя бассейн выше уровня прилива или откачивая воду из бассейна.
Использование энергии ПЭС затрудняется из-за неравномерности ее выработки. Для устранения этой неравномерности бассейн ПЭС можно разделить плотиной на два или три меньших бассейна, с поочередной коммутацией этих бассейнов через турбины с морем и между собой. Но эта мера полностью не исключает неравномерности выработки электроэнергии, обусловленной цикличностью приливов в течение полумесячного периода. Стоимость многобассейновых ПЭС очень высока, поэтому в настоящее время строят однобассейновые ПЭС. Мощность такой ПЭС вследствие изменения напора воды возрастает от нуля до некоторого максимального значения, а затем вновь снижается до нуля [2].
Для оптимизации выработки электроэнергии турбины ПЭС должны использоваться в нескольких режимах. Выбор режима зависит от необходимой в данный момент мощности, потребностей в энергии и возможностей других производителей электроэнергии. В основном используются следующие режимы.
- Если ПЭС построена для обеспечения местных потребностей в электроэнергии, то необходимы страхующие энергоустановки, которые подключаются в период угасания приливов.
- Если ПЭС включена в крупную энергосеть и является сравнительно небольшим источником энергии в масштабах сети, то ее работа приспосабливается к потребителям энергосети.
- Если требования к энергии ПЭС не связаны с временем суток, ее можно использовать в естественном режиме. Энергию можно использовать на нужды транспорта, зарядку аккумуляторов, производство водорода и т.п.
Источник