Поднять ph морском аквариуме
Из книги: Randy Holmes-Farley: Рифовая алхимия
Величина pH в рифовом аквариуме серьёзным образом влияет на жизнеспособность и состояние организмов, считающих этот аквариум своим домом. К сожалению, есть много факторов, которые выводят pH за пределы диапазона, оптимального для многих совместно содержащихся в морских аквариумах организмов. К примеру, слишком низкое значение pH затрудняет формирование скелета из карбоната кальция у кальцинируемых организмов. При достаточно низком pH эти скелеты, фактически, начинают растворяться. По этой причине аквариумисты должны следить за данным параметром. Подобное наблюдение, очень часто, является первым шагом на пути к решению различных вопросов, связанных с рН. Многие рифовые аквариумисты относят низкое значение pH к числу самых досадных проблем, связанных с поддержанием подходящих условий в аквариуме. В настоящей статье будут подробно рассмотрены причины, которые могут привести к низким значениям pH во многих аквариумах, и описаны лучшие способы его повышения. Проблемы, связанные с высоким значением pH были вкратце рассмотрены в моей предыдущей статье.
Данная глава должна помочь аквариумистам понять, что означает термин “pH”. Те, кто хочет только решить проблему низкого pH, может сразу перейти к выделенному жирным шрифтом тексту в конце данного раздела.
Есть множество различных определений понятия pH применительно к морской воде. В системе, используемой большинством аквариумистов (система Национального Бюро Стандартов – NBS) pH определяется согласно уравнению 1:
где a H это «активность» ионов водорода (H + , также называемых протонами) в растворе. Активность – это способ, которым химики измеряют “свободные” концентрации, и pH является мерой числа ионов водорода в растворе. Ионы водорода в морской воде частью находится в свободном состоянии (в действительности они не свободны, а присоединяются к молекулам воды, образуя комплексы — например, H 3 O + ), а частью составляют комплексы с другими ионами (поэтому химики используют термин «активность» вместо концентрации). В частности, ионы H + в обычной морской воде присутствуют в виде свободных ионов H + (около 73% от общего количества), в виде пар ионов H + /SO 4 — (около 25% от общего содержания H + ), и виде пар ионов H + /F — (небольшая доля от общего числа H + ). Вопросы активности также влияют на калибровочные буферные растворы, и это одна из причин, по которой к морской воде применяют различные шкалы измерения pH и калибровочные буферные растворы. Нас, аквариумистов, однако, все эти прочие стандарты мало касаются: в среде аквариумистики принято иметь дело исключительно со стандартной системой NBS (Национального Бюро Стандартов США).
Для понимания основных проблем, связанных со значением pH в морских аквариумах, можно представить, что значение pH непосредственно связано с концентрацией H + :
где g H – константа (коэффициент активности), которую, в большинстве случаев, можно игнорировать ( g H = 1 в чистой пресной воде и ~0.72 в морской воде). По сути, аквариумистам достаточно понимать, что pH является мерой числа ионов водорода в растворе, и что шкала pH логарифмическая. Это означает, что при pH 6 имеется в 10 раз больше ионов H + , чем при pH 7, и что при pH 6 имеется в 100 раз больше ионов H+, чем при pH 8. Следовательно, небольшое изменение величины pH может быть связано с существенным изменением концентрации ионов H + в воде.
Зачем контролировать pH?
Есть несколько причин, по которым аквариумисты хотели бы контролировать pH в морских аквариумах. Одна из них в том, что водные организмы активно растут только в определённом диапазоне pH. Естественно, этот диапазон различен для разных организмов, и понятие «оптимального» диапазона может быть не совсем корректным для аквариума, в котором содержится много различных видов. Даже натуральная морская вода (pH = 8.0-8.3) не будет оптимальной для всех существ, живущих в ней. Тем не менее, более восьмидесяти лет назад было установлено, что сильное расхождение pH от показателя, свойственного натуральной морской воде (например, ниже значения pH 7.3), является источником стресса для рыб 1 . Теперь мы обладаем дополнительной информацией об оптимальных диапазонах величины pH для многих организмов, но, к сожалению, эти данные недостаточны для того, чтобы аквариумисты могли найти оптимальное значение pH для большинства организмов, которые их интересуют. 2-6 Кроме того, вдияние pH может быть косвенным. Например, известно, что токсичность меди и никеля для некоторых организмов, присутствующих в наших аквариумах (таких как мизиды и разноногие ракообразные) зависит от величины pH 7 . Как следствие, диапазоны pH, которые будут приемлемы для одного аквариума, могут отличаться от величин, приемлемых для другого, даже если в этих аквариумах будут жить одиаковые организмы.
Тем не менее, имеются фундаментальные процессы, происходящие во многих морских организмах, на которые серьёзно влияют изменения pH. Одним из них является кальцификация (отвердение). Известно, что кальцификация в кораллах зависит от значения pH, и она падает по мере падения pH. 8-9 Используя такие факторы в совокупности с опытом, накопленным многочисленными любителями, мы можем разработать некоторые основные положения относительно приемлемого диапазона и предельно допустимых значений pH для рифовых аквариумов.
Каков приемлемый диапазон значений pH для рифового аквариума?
Приемлемый диапазон значений pH для рифовых аквариумов – это скорее мнение, а не конкретно определённый факт, и естественно, он будет варьироваться в зависимости от того, кто высказывает это мнение. И этот диапазон может довольно сильно отличаться от «оптимального» диапазона. При этом, по сравнению с приемлемым диапазоном, гораздо трудее обосновать, что же является «оптимальным диапазоном». Я предлагаю считать подходящим значение pH натуральной морской воды, равное примерно 8.2, но рифовый аквариум может жить в более широком диапазоне значений pH. Я считаю, что диапазон значений pH от 7.8 до 8.5 является приемлемым для рифовых аквариумов, с некоторыми допущениями, а именно:
- Буферность (KH) должна составлять, как минимум, 2.5 мэкв/л, и предпочтительно выше, особенно ближе к нижнему пределу диапазона pH. Данное положение частично основывается на том факте, что многие рифовые аквариумы довольно эффективно содержатся в диапазоне pH 7.8-8.0. При этом большая часть лучших из этих аквариумов содержит кальциевый реактор, который, хотя и имеет тенденцию к снижению pH, при этом поддерживает достаточно высокий уровень KH (3 мэкв/л и выше). В этом случае, любые проблемы, связанные с кальцинированием при низких значениях pH, могут быть компенсированы повышением щёлочности. Низкое значение pH в первую очередь поражает кальцифицируемые организмы, затрудняя получение достаточного количества карбоната для образования скелетов. Увеличение буферности сглаживает это затруднение по причинам, которые будут подробно рассмотрены далее в данной статье.
- Уровень кальция должен составлять, как минимум, 400 ppm. При понижении pH кальцификация становится затруднительной; она также становится затруднительной, поскольку снижается уровень содержания кальция. Крайне нежелательно одновременно иметь предельно допустимые низкие значения pH, щёлочности и содержания кальция. Таким образом, если pH будет в области низких значений, и будет нелегко изменить его значение (как например, в аквариуме с кальциевым реактором CaCO3/CO2), следует, по крайней мере, обеспечить приемлемое содержание кальция (~400-450 ppm). Более того, одна из проблем, возникающих при высоких значениях pH (свыше 8.2), является абиотическое осаждение карбоната кальция, приводящее к падению содержания кальция и щёлочности и к засорению нагревателей и импеллеров насосов. Если величина pH в аквариуме составляет 8.4 или выше (что часто имеет место в аквариумах, при применении известковой воды Ca(OH) 2 — кальквассера), следует обратить должное внимание поддержанию надлежащего уровеня содержания кальция и буферности. Это означает, что эти уровни не должны быть ни слишком низкими, вызывающими биологическую кальцификацию, ни слишком высокими, вызывающими избыточное абиотическое осаждение на оборудовании.
Величина pH в аквариуме с морской водой тесно связана с количеством растворенной в воде двуокиси углерода. Она также связана и с буферностью. Действительно, если вода будет полностью аэрированной (т.е. в полном равновесии с обычным воздухом), то величина pH точно определяется щёлочностью карбоната. Чем выше щёлочность, тем выше pH. Рисунок 1 показывает соотношение для морской воды, в состоянии равновесия с обычным воздухом (350 ppm двуокиси углерода), и воды, находящейся в состоянии равновесия с воздухом, содержащим избыточное количество двуокиси углерода, который может присутствовать в доме (1000 ppm). Очевидно, что при любой буферности, при повышении содержания двуокиси углерода величина pH понизится. Именно избыток двуокиси углерода и бывает причиной низкого pH в рифовых аквариумах.
Рисунок 1. Соотношение между буферностью и pH в морской воде, находящейся в равновесии с воздухом, содержащим обычное и повышенное количество двуокиси углерода.
Зелёная точка соответствует естественной морской воде в равновесии с обычным воздухом, а кривые отражают результат, который был бы получен при повышенной или пониженной буферности.
Упрощенно данное соотношение можно понимать следующим образом: Двуокись углерода присутствует в воздухе в виде CO 2 . При растворении в воде он превращается в угольную кислоту H 2 CO 3 :
Количество H 2 CO 3 в воде (когда она хорошо аэрирована) не зависит от pH, а только от содержания углекислого газа в воздухе (и, в некоторой степени, от других факторов, таких, как температура и солёность). В системах, не уравновешенных воздухом, к которым можно отнести многие рифовые аквариумы, эти аквариумы можно рассматривать «как если бы» они находились в равновесии с неким количеством CO 2 в воздухе, которое эффективно определяется количеством H 2 CO 3 в воде. Следовательно, если в аквариуме (или в воздухе, с которым он уравновешен) имеется «избыток CO 2 », это означает, что в аквариуме присутствует избыток H 2 CO 3 , что, в свою очередь, означает что величина pH должна упасть, как это показано ниже.
Морская вода содержит смесь угольной кислоты, бикарбоната и карбоната, которые всегда находятся в равновесии:
Уравнение 4 показывает, что если в аквариуме имеется избыток H 2 CO 3 , часть его диссоциирует (разбивается на части), превращаясь в ионы H + , HCO 3 — и CO 3 — . В результате избытка H + , величина pH будет ниже, чем, если бы в нём было меньше CO 2 /H 2 CO 3 . При большом избытке CO 2 в морской воде величина pH может упасть до очень низких значений (pH 4-6). Уравновешивание воды в моём аквариуме с двуокисью углерода при давлении в 1 атмосферу привело к снижению pH до 5.0, хотя маловероятно, что такое низкое значение было бы достигнуто в рифовом аквариуме, поскольку находящиеся в нём грунт и остовы кораллов будут играть роль буфера при растворении. В моём аквариуме вода, уравновешенная двуокисью углерода при давлении в 1 атмосферу, в присутствии избытка твёрдого арагонита (кристаллическая форма карбоната кальция, т.е. в той же форме, что и в остовах кораллов), привела к величине pH, равной 5.8.
Если буферность составляет 3 мэкв/л (8.4 dKH), а pH — 7.93, это означает, что в аквариуме имеется избыток CO 2 (в противном случае значение pH должно было быть чуть выше 8.3).
Рисунки 2-5 графически показывают некоторые способы повышения pH в аквариумах. К способам увеличения pH относятся:
- Насыщение воды «обычным воздухом», вытесняя избыток двуокиси углерода приведет к смещению характеристик аквариума по зелёной линии (Рисунок 3), в результате чего значение pH поднимется чуть выше pH 8.3. Такой же результат имел бы место, если бы для избытока двуокиси углерода был поглощен в результате роста макро водорослей. Однако редко случается, чтобы такое явление могло привести к смещению характеристики вдоль зелёной линии, до значения выше pH 8.3.
- Увеличение буферности: даже если в аквариуме продолжает сохраняться избыток CO 2 , увеличение буферности приведет к увеличению pH вдоль зелёной линии (Рисунок 4) до значения 8.1 при буферности 4.5 мэкв/л (12.6 dKH).
- Применение известковой воды (kalkwasser) для снижения избыточного содержания CO 2 до нормального уровня, а также для увеличения буферности (до 4 мэкв/л), может привести к смещению кривой вдоль зелёной линии (Рисунок 5), что приведёт к увеличению pH свыше 8.4 и буферности до 4 мэкв/л (11.2 dKH).
Источник