- Первая труба наполняет бассейн за 15 часов за сколько часов заполнит бассейн вторая труба
- Бассейн наполняется двумя трубами за 10 ч. За сколько часов бассейн наполнит первая труба, если она это делает на 15 ч быстрее, чем первая
- Две трубы наполняют бассейн
- Первая труба наполняет бассейн за 15 часов за сколько часов заполнит бассейн вторая труба
- Математика по полочкам
- 21. Задачи на совместную работу
- МАТЕРИАЛ ДЛЯ ПОВТОРЕНИЯ
- Задачи на работу
- Задачи на совместную работу
- УПРАЖНЕНИЯ
- ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ
Первая труба наполняет бассейн за 15 часов за сколько часов заполнит бассейн вторая труба
Две трубы наполняют бассейн за 3 часа 36 минут, а одна первая труба наполняет бассейн за 6 часов. За сколько часов наполняет бассейн одна вторая труба?
Пусть объем бассейна равен 1. Обозначим и
— скорости наполнения бассейна первой и второй трубой, соответственно. Две трубы наполняют бассейн за 3 часа 36 минут:
По условию задачи одна первая труба наполняет бассейн за 6 часов, то есть Таким образом,
Тем самым, вторая труба за час наполняет 1/9 бассейна, значит, вторая труба наполняет этот бассейн за 9 часов.
Приведем другое решение.
Первая труба за час наполняет 1/6 бассейна, значит, за 3 ч 36 мин = 3,6 часа она заполнит 0,6 бассейна. Следовательно, вторая труба за 3,6 часа заполнит 0,4 бассейна. Поэтому весь бассейн она заполнит за время 3,6:0,4 = 9 часов.
Источник
Бассейн наполняется двумя трубами за 10 ч. За сколько часов бассейн наполнит первая труба, если она это делает на 15 ч быстрее, чем первая
Если в лоб, то можно так. Пусть 2я труба наполнит за х ч. Тогда 1я за х+15 ч. При этом скорость наполнения для 1й 1/x (часть бассейна,наполняемая за 1 час ). А скорость 2й получается 1/(x+15).
Если они будут работать вместе, то скорость будет:
1/x+1/(1+15).
Соответственно при совместной работе они заполнят бассейн за
часов, что по условию равно 10 ч.
Отрицательный корень исключаем. Остается x=15.
Ответ: 2я труба наполняет бассейн за 15ч.
Косинус острого угла положителен.
Из основного тригонометрического тождества (тригонометрическая единица) следует, что
Sin²x — cos²x = cos4x ⇔ — (cos²x — sin²x) = cos4x ⇔ -cos2x =cos4x ⇔
0 =cos4x+cos2x ⇔2cos(4x -2x)/2 *cos(4x+2x) /2 =0 ⇔2cosx*cos3x =0 ⇒
[ cosx =0 ; cos3x =0 . ⇒ соs, 3x =π/2 +πn ,n∈Z. ⇔
[ x =π /2 +πk , x =π/6 +(π/3)*n ,k, n∈Z. ⇒ x = π/6 +(π/3)*n , n∈Z.
серия решения x = π/6 +(π/3)*n , n∈Z содержит и решения π/2 +πk , k∈Z при n =1 +3k .
ответ : π/6 +(π/3)*n , n∈Z.
* * * * * * *
cosx =0 ⇒ x = π/2 +πk , k∈Z
cos3x =0 ⇒ 3x = π/2 + πn ,n ∈Z ⇔ x = π/6 +πn /3 ,n ∈Z .
—
π/2 +πk = π/6 +πn /3 ⇔3 +6k =1 +2n ⇔ n =1 +3k
— или по другому:
cos3x =cosx(4cos²x -3)
Источник
Две трубы наполняют бассейн
Для вас ещё пара задач на работу. Здесь речь идет о наполнении резервуаров водой, ничего нового. Совместная работа.
Две трубы наполняют бассейн за 7 часа 55 минут, а одна первая труба наполняет бассейн за 38 часов. За сколько часов наполняет бассейн одна вторая труба?
Не забываем перевести минуты в часы. Кроме того, в этой задаче составим таблицу. Производительность первой трубы равна за 1/38 бассейна в час. Производительность второй трубы обозначим y.
Переведём минуты в часы.
Понятно, что 55 минут составляют 55/60 часа.
Можно составить пропорцию:
60 минута ––– 1 час
55 минут ––– t часов
Заполним таблицу для первой трубы и двух труб работающих одновременно. Помним, что при совместной работе производительности складывают:
Можем записать уравнение:
Получили производительность второй трубы 1/10 (бассейна в час). Значит, весь бассейн она заполнит за 10 часов.
Первая труба наполняет резервуар на 60 минут дольше, чем вторая. Обе трубы наполняют этот же резервуар за 40 минут. За сколько минут наполняет этот резервуар одна вторая труба?
Примем производительность первой трубы за х (резервуара в минуту), второй трубы у.
Составим таблицу, для первой и второй трубы заполним графу «время».
Первая труба будет заполнять резервуар за 1/х минут, вторая за 1/у минут.
Первая труба наполняет резервуар на 60 минут дольше, чем вторая, то есть времени затрачивается больше
Можем записать два уравнения и решить систему:
Выразим из второго уравнения х:
Подставим в первое уравнение и решим:
Решаем квадратное уравнение:
Подставим найденные значения у в уравнение:
Система имеет два решения:
Понятно, что производительность не может быть отрицательной. Решением является первая пара. Таким образом, первая труба заполнит 1/120 резервуара в минуту, а вторая 1/60 резервуара в минуту.
Следовательно весь резервуар второй трубой будет заполнен за 60 минут.
Можно минуты перевести в часы, тогда будем решать систему:
Выразим из второго х:
Подставим в первое уравнение и решим:
Решаем квадратное уравнение:
Подставим найденные значения у в уравнение:
Система имеет два решения:
Решением является первая пара. Первая труба заполнит ½ резервуара в час, а вторая 1 резервуар в час. То есть вторая труба наполнит его за 60 минут.
*Второй подход немного упрощает процесс вычисления, поэтому смело используйте если это вам будет удобно.
Источник
Первая труба наполняет бассейн за 15 часов за сколько часов заполнит бассейн вторая труба
Первый и второй насосы наполняют бассейн за 9 минут, второй и третий — за 14 минут, а первый и третий — за 18 минут. За сколько минут эти три насоса заполнят бассейн, работая вместе?
Наименьшее общее кратное чисел 9, 14 и 18 равно 126. За 126 минут первый и второй, второй и третий, первый и третий насосы (каждый учтен дважды) заполнят 14 + 9 + 7 = 30 бассейнов. Следовательно, работая одновременно, первый, второй и третий насосы заполняют 15 бассейнов за 126 минут, а значит, 1 бассейн за 8,4 минуты.
Приведём другое решение.
За одну минуту первый и второй насосы заполнят 1/9 бассейна, второй и третий — 1/14 бассейна, а первый и третий — 1/18 бассейна. Работая вместе, за одну минуту два первых, два вторых и два третьих насоса заполнят
бассейна.
Тем самым, они могли бы заполнить бассейн за 21/5 минуты или за 4,2 минуты. Поскольку каждый из насосов был учтен два раза, в реальности первый, второй и третий насосы, работая вместе, могут заполнить бассейн за 8,4 минуты.
Приведем алгебраическое решение Тимура Алиева.
Пусть x — производительность первого насоса, y — производительность второго насоса, z — производительность третьего насоса. Тогда
Сложив уравнения, получим
Тогда при совместной работе всех трех насосов время заполнения бассейна составит минуты.
Источник
Математика по полочкам
Готовимся к экзамену по математике за период обучения на II ступени общего среднего образования
21. Задачи на совместную работу
МАТЕРИАЛ ДЛЯ ПОВТОРЕНИЯ
Задачи на работу
В таких задачах всегда присутствуют одни и те же величины, их три:
— первая величина — это время, за которое выполняется та или иная работа. Обозначают время буквой t.
— вторая величина — объём работы: сколько сделано деталей, налито воды, вспахано полей и так далее. Обозначим объем буквой О.
— третья величина — производительность. По сути, это скорость работы. Обозначим производительность буквой П.
Скорость любой работы, т.е. производительность можно определить, как объём работы, сделанной за какое-то время.
Получим формулу для производительности: П = О : t.
Пример. Токарь делает 5 деталей в час. Сколько деталей он сделает за 7 часов?
Пример. Красная Шапочка и Волк очень любят пирожки. Волк может съесть 24 пирожка за 4 часа, а Красная Шапочка — 35 пирожков за 7 часов. У Волка в корзинке 30 пирожков, а у Красной Шапочки — 20. Кто съест свои пирожки раньше, если они начали есть одновременно?
Задачи на совместную работу
Пример. Одна труба может наполнить бассейн за четыре часа. Вторая — за шесть часов. За какое время заполнится бассейн, если обе трубы включить одновременно?
Так как трубы работают вместе, складывают их производительности.
Для первой трубы, которая заполняет 1 бассейн за 4 часа: П = О:t = 1:4, т.е. за час первая труба заполнит 1/4 бассейна.
Для второй трубы: П = О:t = 1:6, т.е. вторая труба заполнит за час 1/6 бассейна.
Вместе, при совместной работе, трубы заполнят за час: 1/4 + 1/6 = 5/12 — две трубы за 1 час.
Объём работы 1 бассейн. Совместная производительность 5/12 бассейна в час.
t = О:П = 1 : 5/12 = 12/5 = 2,4 (ч.)
Ответ:2,4 часа.
УПРАЖНЕНИЯ
ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ
3. Два экскаватора роют траншею. Работая отдельно, первый может вырыть траншею за 10 дней, второй — за 16 дней. За сколько дней они выроют траншею, работая совместно?
4. Водоем заполняется первой трубой за 5 ч, а второй трубой за 4 ч. За сколько часов наполнится водоем, если будут одновременно работать две трубы?
5. Две наборщицы должны были набрать по 120 страниц каждая. Вторая наборщица набирала за 1 ч на 5 страниц меньше, чем первая, поэтому закончила работу на 2 ч позже. Сколько страниц в час набирала первая наборщица?
6. Две бригады рабочих должны по плану изготовить 240 деталей. Первая бригада работала 6 ч, а вторая — 5 ч. Сколько деталей в час изготавливала каждая бригада, если первая делала на 4 детали в час меньше, чем вторая?
Источник