Определение угла поворота интегралом мора

Метод Мора. Интеграл Мора

Теорема Кастельяно дала нам возможность определять перемещения. Эту теорему используют для отыскания перемещений в пластинках, оболочках. Однако, вычисление потенциальной энергии громоздкая процедура и мы сейчас наметим более простой и наиболее общий путь определения перемещений в стержневых системах.

Пусть задана произвольная стержневая система и нам нужно определить в ней перемещение точки по направлению , вызванное всеми силами системы —

Т.к. в общем случае в системе нет силы, приложенной по направлению искомого перемещения, то воспользоваться теоремой Кастельяно нельзя. Добавим к числу прочих сил силу , приложенную к точке и действующую в направлении . Тогда внутренние силовые факторы в системе можно выразить

, где — внутренние силовые факторы в системе от действующих сил;

— внутренние силовые факторы от силы .

Внесем эти выражения в (3)

По теореме Кастельяно:

Учтя, что

получаем выражение:

называемое интегралом Мора.

Для того, чтобы определить перемещение с помощью метода Мора, необходимо:

1) Определить внутренние силовые факторы в системе от заданных сил.

2) Приложить по направлению искомого перемещения единичную обобщенную силу (единичную силу для определения линейного перемещение, пару сил с моментом равным единице для определения углового перемещения и определить внутренние силовые факторы от единичной силы.

3) Подставить полученные ранее выражения в интеграл Мора и определить перемещение.

Для систем, работающих на изгиб: балок, рам, влияние нормальных сил на величину перемещения незначительно и интеграл Мора в этом случае выглядит:

Источник

Вопрос 18.Определение перемещений при изгибе. Интеграл Мора. Метод Верещагина.

Прогиб – линейная деформация, смещение центра тяжести поперечного сечения.

Интеграл Мора позволяет определять прогибы и углы поворота заданного сечения балки, используя интегральное исчисление.

— перемещение сечения К под действием Р, где Mxp-изгибающий момент в произвольном сечении, х — единичный момент в том же сечении под действием единичной силы или единичного момента (если ищется угол поворота), EIx– жёсткость сечения балки при изгибе.

Читайте также:  Какие моря вокруг сахалина

Правило Верещагина. Используется, когда жёсткость при изгибе постоянна вдоль длины. Эпюра изгибающих моментов должна быть линейной. Максимальный прогиб называется стрелой.

Следует иметь в виду, что способы «перемножения» эпюр применимы только при наличии двух условий:

1.Изгибная жесткость балки на рассматриваемом участке должна быть постоянной (EI=Const),

2.Одна из двух эпюр моментов на этом участке (грузовая или единичная) должна быть обязательно линейной. При этом обе эпюры не должны в пределах данного участка иметь перелома.

Δкр= * ωp * k c — грузовое перемещение

ωp – площадь грузовой эпюры.

k c — ордината в единичном эпюре, соответствует центру тяжести грузовой.

При постоянной жесткости по длине балки EIz для определения прогиба энергетическим методом необходимо вычислять интеграл вида:

.

Допустим, что эпюры изгибающих моментов аналитически выражаются функциями Мz=f1(х), М ’ z´ = f2(х), причем одна из них, например, f1(х) произвольная, а другая f2(х) линейная функция и может быть записана в виде f2(х) = kх+b. Пусть графики этих функций имеют вид представленный на рис. 3.86.

В соответствии с принятыми обозначениями можно записать:

Первый интеграл представляет собой статический момент относительно оси x площади эпюры ограниченной кривой Mz, т.е.

, где

ω – площадь, ограниченная кривой Mz,

хc — координата центра тяжести фигуры ограниченной кривой Mz относительно оси х.

Второй интеграл представляет собой площадь, ограниченную кривой Mz, которую обозначили ω.

Таким образом, искомый интеграл равен произведению площади эпюры Mz на расположенную под ее центром тяжести ординату эпюры Мz´. Важно отметить, что вычисление перемещения способом Верещагина возможно только в том случае, когда, во-первых, эпюры Mz и Мz ´ на рассматриваемом участке не имеют изломов, во-вторых, одна из эпюр описывается линейной зависимостью и именно по ней определяется ордината под центром тяжести другой эпюры yc. Поэтому при вычислении способом Верещагина интеграл Мора по всей длине балки надо заменить суммой интегралов по участкам, в пределах которых эпюра моментов от единичной нагрузки не имеет изломов. Тогда перемещение сечения балки δ:

Таким образом, для вычисления прогибов по способу Верещагина необходимо:

1) построить эпюру изгибающих моментов от заданных нагрузок Mz (основная эпюра);

Читайте также:  Моква над уровнем моря

2) снять внешнюю нагрузку (но сохранить опоры) и приложить в том сечении, в котором определяется перемещение (угол поворота) единичную силу (единичный момент) в направлении искомого.перемещения (угла поворота);

3) построить эпюру изгибающих моментов от единичной нагрузки Мz ´(единичная эпюра);

4) разбить эпюры на участки, в пределах которых отсутствуют изломы эпюр, и для каждого участка вычислить площадь криволинейной эпюры ωi и ординаты эпюр ограниченных линейной функцией под центрами тяжести криволинейных эпюр уci.

5) составить произведения ωi уci и просуммировать:

Встречающиеся на практике эпюры изгибающих моментов разбивают на простейшие фигуры: прямоугольник, треугольник и параболический треугольник.

Площади этих фигур и координаты центров тяжести приведены в таблице

Вид эпюры Mz Площадь w Координата центра тяжести xc
ab / 2 a / 3
ab / 3 a/ 4
ab / 4 a / 5
2ab / 3 a / 2
2ab / 3 5a / 8

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Источник

Определение прогибов и углов поворотов методом Мора

изображение Интеграл Мора сопромат

Интеграл Мора позволяет определять прогибы и углы поворота заданного сечения балки, используя интегральное исчисление. Хотя данный метод предпочтительнее метода начальных параметров, он неудобен из-за необходимости вычисления интеграла. Из интеграла Мора был получен удобное для практического применения правило Верещагина, при котором не нужно вычислять интегралы, а только нужно находить площадь и центр тяжести эпюр.

Получение формулы интеграла Мора

Рассмотрим балку, изображенную на рис. 15.6, а. Обозначим изображение Интеграл Мора сопромати изображение Интеграл Мора сопромат, соответственно, изгибающий момент и поперечную силу, возникающие в заданной балке от действующей на нее группы нагрузок P. Пусть требуется определить прогиб балки (изображение Интеграл Мора сопромат) в точке K.

изображение Интеграл Мора сопромат

Введем в рассмотрение вспомогательную балку (та же балка, но нагруженная только единичной силой либо единичным изгибающим моментом). Нагрузим ее только одной силой (рис. 15.6, б). Единичную силу приложим в точке K, где нужно определить прогиб.

Внутренние усилия, возникающие во вспомогательной балке, обозначим изображение Интеграл Мора сопромати изображение Интеграл Мора сопромат.

изображение Интеграл Мора сопромат

Воспользуемся теперь теоремой о взаимности работ, согласно которой работа внешних сил, приложенных к вспомогательной балке на соответствующих перемещениях заданной балки равна взятой с обратным знаком работе внутренних сил заданной балки на соответствующих перемещениях вспомогательной балки. Тогда .

При определении перемещений в балке, как правило, можно пренебрегать влиянием поперечной силы, ( не учитывать второе слагаемое).

Читайте также:  Поставщик морской капусты сушеной

Тогда, учитывая, что изображение Интеграл Мора сопромат, окончательно получим формулу интеграла Мора : изображение Интеграл Мора сопромат.

Определение перемещений по формуле интеграла Мора часто называют определением перемещений методом Мора , а саму формулу – интегралом Мора .

Входящие в интеграл Мора изгибающие моменты берутся в произвольном поперечном сечении и поэтому представляют собой аналитические функции от текущей координаты z.

Заметим, что если мы хотим в этой же точке K определить угол поворота поперечного сечения (изображение Интеграл Мора сопромат), то нам необходимо к вспомогательной балке приложить не единичную силу, а единичный момент изображение Интеграл Мора сопромат(рис. 15.6, в).

порядок вычисления перемещений методом Мора:

· к вспомогательной балке в той точке, где требуется определить перемещение, прикладываем единичное усилие. При определении прогиба прикладываем единичную силу изображение Интеграл Мора сопромат, а при определении угла поворота – единичный момент изображение Интеграл Мора сопромат;

· для каждого участка балки составляем выражения для изгибающих моментов заданной (изображение Интеграл Мора сопромат) и вспомогательной (изображение Интеграл Мора сопромат) балок;

· вычисляем интеграл Мора для всей балки по соответствующим участкам;

· если вычисленное перемещение имеет положительный знак, то это означает, что его направление совпадает с направлением единичного усилия. Отрицательный знак указывает на то, что действительное направление искомого перемещения противоположно направлению единичного усилия.

Вычисление интеграла Мора пример

Пусть для шарнирно опертой балки постоянной изгибной жесткости изображение Интеграл Мора сопромат, длиной l, нагруженной равномерно распределенной нагрузкой интенсивностью q (рис. 15.7, а), требуется определить прогиб посредине пролета (изображение Интеграл Мора сопромат) и угол поворота на левой опоре (изображение Интеграл Мора сопромат).

определение прогиба с помощью интеграла Мора

изображение Интеграл Мора сопромат

В том месте, где нам нужно определить прогиб, к вспомогательной балке прикладываем единичную силу (рис. 15.7, б).

изображение Интеграл Мора сопроматЗаписываем выражения для изгибающих моментов для каждого из двух участков (изображение Интеграл Мора сопромат) заданной и вспомогательной балок:

изображение Интеграл Мора сопромат

.

изображение Интеграл Мора сопромат

.

Вычисляем интеграл Мора . Учитывая симметрию балки, получим:

изображение Интеграл Мора сопромат

.

Определение угла поворота методом Мора

изображение Интеграл Мора сопромат

Нагружаем вспомогательную балку единичным моментом , прикладывая его в том месте, где мы ищем угол поворота (рис. 15.7, в).

изображение Интеграл Мора сопромат

Записываем выражения для изгибающих моментов в заданной и вспомогательной балках только для одного участка ():

изображение Интеграл Мора сопромат

;

изображение Интеграл Мора сопромат

.

Тогда интеграл Мора будет иметь вид:

изображение Интеграл Мора сопромат

.

изображение Интеграл Мора сопромат

Положительный знак в выражении для угла поворота поперечного сечения балки указывает на то, что поворот сечения происходит по направлению единичного момента .

Источник

Оцените статью