Метод Максвелла – Мора определения перемещений
Метод Максвелла – Мора определения перемещений является универсальным методом, справедливым, в отличие от рассмотренного выше аналитического способа, не только для балок, но и для любых стержневых систем. Чтобы понять сущность метода Максвелла – Мора, введем понятия обобщенной силы и обобщенного перемещения [2]. Обобщенной силой называется любое однопараметрическое силовое воздействие: это может быть и сосредоточенная сила, и сосредоточенный момент, и распределенная нагрузка, и группа сил, связанных между собой. Обобщенным перемещением, соответствующим заданной обобщенной силе, называется то перемещение, на котором обобщенная сила совершает работу. Приведем два самых важных для практики примера. Если обобщенной силой (о.с.) является вертикальная сосредоточенная сила, приложенная в точке А балки, то соответствующим этой силе обобщенным перемещением (о.п.) является перемещение по направлению этой силы, то есть прогиб в точке А (рис. 4.17, а), так как именно на таком перемещении сила F совершает работу. Если обобщенной силой является сосредоточенная пара сил, приложенная в точке В, то обобщенным перемещением, соответствующим этой обобщенной силе, будет угол поворота в сечении В (рис. 4.17, б).
Запишем приближенную формулу Максвелла – Мора, которая используется для определения перемещений в изгибаемых плоских стержневых системах и не учитывает влияния на перемещения продольной и поперечной сил:
. (4.21)
В этой формуле – искомое обобщенное перемещение (это может быть и прогиб, и угол поворота любого сечения);М – изгибающий момент от заданной нагрузки; Мi – изгибающий момент, вызванный единичной обобщенной силой, соответствующей искомому перемещению; EI – жесткость стержня при изгибе (произведение модуля упругости на момент инерции). Интегрирование в формуле Максвелла – Мора ведется по длинам всех стержней конструкции (по длинам всех участков балки).
Таким образом, чтобы воспользоваться формулой Максвелла – Мора, надо:
- определить изгибающий момент на каждом участке от заданной нагрузки;
- освободить конструкцию от заданной нагрузки и загрузить ее единичной обобщенной силой, соответствующей искомому перемещению, то есть:
- если мы хотим определить вертикальное перемещение какой-то точки, то в этой точке следует приложить сосредоточенную силу, положить ее равной единице и найти изгибающий момент, вызванный действием только этой силы;
- если требуется найти угол поворота какого-то сечения, то в этом сечении надо приложить сосредоточенную пару, равную единице, и найти изгибающий момент от этой пары;
- подставить произведение изгибающих моментов от нагрузки и от единичной обобщенной силы в интеграл (4.21) и проинтегрировать по всей длине конструкции.
Введем правило знаков в методе Максвелла – Мора: полученный по формуле Максвелла – Мора положительный знак перемещения показывает, что искомое перемещение происходит по направлению, совпадающему с принятым направлением единичной обобщенной силы, отрицательный знак перемещения говорит о том, что точки оси перемещаются (сечения поворачиваются) в сторону, противоположную направлению единичной обобщенной силы. Очень распространенным способом интегрирования формулы Максвелла – Мора является способ графического интегрирования, называемый правилом Верещагина. Для того, чтобы воспользоваться правилом Верещагина, надо построить графики функций М и , входящих в подынтегральное выражение формулы Максвелла – Мора. Такими графиками являются эпюры М и
. Операция интегрирования формулы Максвелла – Мора с помощью правила Верещагина носит название «перемножение эпюр». Правило Верещагина состоит в следующем:
- Разбиваем эпюру М на простые фигуры, для которых известно положение центра тяжести (прямоугольники, треугольники и т. п.) 8 .
- Находим площади этих фигур
. При определении площадей учитываем знаки ординат.
- Под центрами тяжести этих фигур находим ординаты
на эпюре
(с учетом знаков).
- Искомый интеграл будет равен (при постоянной жесткости балки
) сумме произведений площадей
на соответствующие им ординаты под центрами тяжести
, то есть
, (4.22) где n – количество фигур, на которые разбита эпюра М. Примечание. Та эпюра (чаще всего
), на которой ищем ординату под центром тяжести, должна быть обязательно линейна на всем участке перемножения.
Рис. 4.18. Некоторые полезные формулы для перемножения эпюр В заключение приведем некоторые формулы, которые удобно использовать при перемножении эпюр. Если на участке балки действует равномерно распределенная нагрузка, то, как известно, эпюра изгибающих моментов на этом участке является квадратной параболой. Площадь сегмента, ограниченного квадратной параболой и показанного на рис. 4.18, а, вычисляется по формуле
, (4.23) а центр тяжести этой фигуры находится посередине, независимо от угла наклона секущей. Если обе перемножаемые эпюры линейны и представляют собой трапеции (рис. 4.18, б), то, чтобы не разбивать эти трапеции на треугольники и прямоугольники, удобно воспользоваться формулой перемножения трапеций
, (4.24) где ординаты a, b, c и d на эпюрах М и Мi показаны на рис. 4.18, б (берутся с учетом знаков); l – длина перемножаемого участка эпюр. Вторым способом графического интегрирования формулы Максвелла – Мора является способ, использующий формулу Симпсона. Эта формула получена из известной в математике формулы Симпсона приближенного интегрирования путем деления участка интегрирования на два отрезка. Если подынтегральные функции М и Мi – линейные или квадратные параболы, то формула Симпсона дает точное значение интеграла. Приведем эту формулу, применяемую для перемножения эпюр,
. (4.25) В написанной формуле
– длина участка интегрирования;
и
– значения крайних ординат на эпюрахМиМi;
– ординаты на эпюрахМиМi, вычисленные в середине участка перемножения (рис. 4.19).
Рис. 4.19. Пояснения к формуле Симпсона Примеры решения задач
Источник
Определение прогибов и углов поворотов методом Мора
Интеграл Мора позволяет определять прогибы и углы поворота заданного сечения балки, используя интегральное исчисление. Хотя данный метод предпочтительнее метода начальных параметров, он неудобен из-за необходимости вычисления интеграла. Из интеграла Мора был получен удобное для практического применения правило Верещагина, при котором не нужно вычислять интегралы, а только нужно находить площадь и центр тяжести эпюр.
Получение формулы интеграла Мора
Рассмотрим балку, изображенную на рис. 15.6, а. Обозначим и
, соответственно, изгибающий момент и поперечную силу, возникающие в заданной балке от действующей на нее группы нагрузок P. Пусть требуется определить прогиб балки (
) в точке K.
Введем в рассмотрение вспомогательную балку (та же балка, но нагруженная только единичной силой либо единичным изгибающим моментом). Нагрузим ее только одной силой (рис. 15.6, б). Единичную силу приложим в точке K, где нужно определить прогиб.
Внутренние усилия, возникающие во вспомогательной балке, обозначим и
.
Воспользуемся теперь теоремой о взаимности работ, согласно которой работа внешних сил, приложенных к вспомогательной балке на соответствующих перемещениях заданной балки равна взятой с обратным знаком работе внутренних сил заданной балки на соответствующих перемещениях вспомогательной балки. Тогда .
При определении перемещений в балке, как правило, можно пренебрегать влиянием поперечной силы, ( не учитывать второе слагаемое).
Тогда, учитывая, что , окончательно получим формулу интеграла Мора :
.
Определение перемещений по формуле интеграла Мора часто называют определением перемещений методом Мора , а саму формулу – интегралом Мора .
Входящие в интеграл Мора изгибающие моменты берутся в произвольном поперечном сечении и поэтому представляют собой аналитические функции от текущей координаты z.
Заметим, что если мы хотим в этой же точке K определить угол поворота поперечного сечения (), то нам необходимо к вспомогательной балке приложить не единичную силу, а единичный момент
(рис. 15.6, в).
порядок вычисления перемещений методом Мора:
· к вспомогательной балке в той точке, где требуется определить перемещение, прикладываем единичное усилие. При определении прогиба прикладываем единичную силу , а при определении угла поворота – единичный момент
;
· для каждого участка балки составляем выражения для изгибающих моментов заданной () и вспомогательной (
) балок;
· вычисляем интеграл Мора для всей балки по соответствующим участкам;
· если вычисленное перемещение имеет положительный знак, то это означает, что его направление совпадает с направлением единичного усилия. Отрицательный знак указывает на то, что действительное направление искомого перемещения противоположно направлению единичного усилия.
Вычисление интеграла Мора пример
Пусть для шарнирно опертой балки постоянной изгибной жесткости , длиной l, нагруженной равномерно распределенной нагрузкой интенсивностью q (рис. 15.7, а), требуется определить прогиб посредине пролета (
) и угол поворота на левой опоре (
).
определение прогиба с помощью интеграла Мора
В том месте, где нам нужно определить прогиб, к вспомогательной балке прикладываем единичную силу (рис. 15.7, б).
Записываем выражения для изгибающих моментов для каждого из двух участков (
) заданной и вспомогательной балок:
.
.
Вычисляем интеграл Мора . Учитывая симметрию балки, получим:
.
Определение угла поворота методом Мора
Нагружаем вспомогательную балку единичным моментом , прикладывая его в том месте, где мы ищем угол поворота (рис. 15.7, в).
Записываем выражения для изгибающих моментов в заданной и вспомогательной балках только для одного участка ():
;
.
Тогда интеграл Мора будет иметь вид:
.
Положительный знак в выражении для угла поворота поперечного сечения балки указывает на то, что поворот сечения происходит по направлению единичного момента .
Источник