73. Экологические примеры энергий. Закон р. Линдемана.
Пирамида энергии — величина потока энергии, проходящего через различные трофические уровни. В отличие от пирамиды чисел или биомассы, характеризующих статику экосистемы, пирамида энергии характеризует динамику прохождения массы пищи через пищевую цепь. На ее форму не влияют ни размеры особей, ни интенсивность их метаболизма. Кроме того, пирамида чисел преувеличивает роль мелких организмов, пирамида биомассы преувеличиват роль крупных. Поэтому пирамида энергии является наиболее универсальной характеристикой для сравнения потока энергии, проходящего через разные уровни, а также для сравнения одной экосистемы с другой.
В 1942 г. Р. Линдеман сформулировал закон пирамиды энергий, или закон (правило) 10 %, согласно которому с одного трофического уровня экологической пирамиды переходит на другой, более высокий ее уровень (по «лестнице»: продуцент консумент редуцент) в среднем около 10 % поступившей на предыдущий уровень экологической пирамиды энергии. Обратный поток, связанный с потреблением веществ и продуцируемой верхним уровнем экологической пирамиды энергией более низким ее уровням, например от животных к растениям, намного слабее не более 0,5 % (даже 0,25 %) от общего ее потока, и потому говорить о круговороте энергии в биоценозе не приходится.
74. Правило биологического усиления в трофических цепях.
ПРАВИЛО БИОЛОГИЧЕСКОГО УСИЛЕНИЯ , накопление живыми организмами ряда химич. неразрушающихся веществ (пестициды, радионуклиды и др.), ведущее к биологич. усилению их действия по мере прохождения в биологич. циклах и по пищевым цепям. В наземных экосистемах с переходом на каждый трофич. уровень происходит по крайней мере 10-кратное увеличение концентрации токсич. веществ. В водных экосистемах накопление многих токсич. веществ (напр., хлорсодержащих пестицидов) коррелирует с массой жиров (липидов). Могут вызвать мутагенный, канцерогенный, летальный и др. эффекты. Кроме того, такие загрязнители могут образовывать др. ядовитые вещества в окружающей среде. Единственный пока возможный способ предотвратить их — правильное их применение в народном хозяйстве с последующим изъятием из системы жизнеобеспечения окружающей среды.
75. Распределение биологической продукции в экосистемах Земли.
Важнейшим практическим результатом энергетического подхода к изучению экосистем явилось осуществление исследований по Международной биологической программе, проводившихся учеными разных стран мира в течение ряда лет, начиная с 1969 г. в целях изучения потенциальной биологической продуктивности Земли.
Теоретическая возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Максимально достигаемый в природе КПД фотосинтеза 10–12 % энергии ФАР, что составляет около половины от теоретически возможного. Такая скорость связывания энергии достигается, например, в зарослях джугары и тростника в Таджикистане в кратковременные, наиболее благоприятные периоды. КПД фотосинтеза в 5 % считается очень высоким для фитоценоза. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1 %, так как фотосинтетическая активность растений ограничивается множеством факторов.
Мировое распределение первичной биологической продукции крайне неравномерно (рис. 152). Самый большой абсолютный прирост растительной массы достигает в среднем 25 г/м 2 в день в очень благоприятных условиях, например в эстуариях рек и в лиманах аридных районов, при высокой обеспеченности растений водой, светом и минеральным питанием. На больших площадях продуктивность автотрофов не превышает 0,1 г/м 2 . Таковы жаркие пустыни, где жизнь лимитируется недостатком воды, полярные пустыни, где не хватает тепла, и обширные внутренние пространства океанов с крайним дефицитом питательных веществ для водорослей. Общая годовая продукция сухого органического вещества на Земле составляет 150–200 млрд т. Более трети его образуется в океанах, около двух третей – на суше. Почти вся чистая первичная продукция Земли служит для поддержания жизни всех гетеротрофных организмов. Энергия, недоиспользованная консументами, запасается в их телах, органических осадках водоемов и гумусе почв.
Эффективность связывания растительностью солнечной радиации снижается при недостатке тепла и влаги, при неблагоприятных физических и химических свойствах почвы и т. п. Продуктивность растительности изменяется не только при переходе от одной климатической зоны к другой, но и в пределах каждой зоны. На территории России в зонах достаточного увлажнения первичная продуктивность увеличивается с севера на юг, с увеличением притока тепла и продолжительности вегетационного сезона. Годовой прирост растительности изменяется от 20 ц/га на побережье и островах Северного Ледовитого океана до более чем 200 ц/га на Черноморском побережье Кавказа. В среднеазиатских пустынях продуктивность падает до 20 ц/га.
Средний коэффициент использования энергии ФАР для всей территории бывшего СССР составляет 0,8 %: от 1,8–2,0 % на Кавказе до 0,1–0,2 % в пустынях Средней Азии. В большинстве восточных районов, где менее благоприятны условия увлажнения, этот коэффициент составляет 0,4–0,8 %, на европейской территории – 1,0–1,2 %. КПД суммарной радиации примерно вдвое ниже.
Для пяти континентов мира средняя продуктивность различается сравнительно мало. Исключением является Южная Америка, на большей части которой условия для развития растительности очень благоприятны (табл. 3).
Питание людей обеспечивается в основном сельскохозяйственными культурами, занимающими примерно 10 % площади суши (около 1,4 млрд га). Общий годовой прирост культурных растений составляет около 16 % от всей продуктивности суши, большая часть которой приходится на леса. Примерно половина урожая идет непосредственно на питание людей, остальная часть – на корм домашним животным, используется в промышленности и теряется в отбросах.
Растительная пища обходится для людей энергетически дешевле, чем животная. Сельскохозяйственные площади при рациональном использовании и распределении продукции могли бы обеспечить растительной пищей примерно вдвое большее население Земли, чем существующее. Однако сельскохозяйственное производство нуждается в большой затрате труда и капиталовложениях. Особенно трудно обеспечить население вторичной продукцией. В рацион человека должно входить не менее 30 г белков в день. Имеющиеся на Земле ресурсы, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно менее 50 % потребностей современного населения Земли.
Существующие ограничения, накладываемые масштабами вторичной продуктивности, усиливаются несовершенством социальных систем распределения. Большая часть населения Земли находится, таким образом, в состоянии хронического белкового голодания, а значительная часть людей страдает также и от общего недоедания.
Таким образом, увеличение биологической продуктивности экосистем и особенно вторичной продукции является одной из основных задач, стоящих перед человечеством.
Источник
Энергетическая концепция экосистемы. Закон Линдемана.
Свет — единственный на Земле пищевой ресурс, энергия которого, в соединении с углекислым газом и водой, рождает процесс фотосинтеза. Фотосинтезирующие растения создают органическое вещество, которым питаются травоядные животные, ими питаются плотоядные и т. д., в конечном итоге растения «кормят» весь остальной живой мир, т. е. солнечная энергия через растения как бы передается всем организмам.
Энергия передается от организма к организму, создающих пищевую, или трофическую цепь: от автотрофов, продуцентов (создателей) к гетеротрофам, консументам (пожирателям) и так 4—6 раз с одного трофического уровня на другой.
Трофический уровень — это место каждого звена в пищевой цепи. Первый трофический уровень — это продуценты, все остальные — консументы. Второй трофический уровень — это растительноядные консументы; третий — плотоядные консументы, питающиеся растительноядными формами; четвертый — консументы, потребляющие других плотоядных, и т. д. Следовательно, можно и консументов разделить по уровням: консументы первого, второго, третьего и т. д. порядков.
Четко распеределяются по уровням лишь консументы, специализирующиеся на определенном виде пищи. Однако есть виды, которые питаются мясом и растительной пищей (человек, медведь и др.), которые могут включаться в пищевые цепи на любом уровне.
Пища, поглощаемая консументом, усваивается не полностью — от 12 до 20% у некоторых растительноядных, до 75% и более у плотоядных. Энергетические затраты связаны прежде всего с поддержанием метаболических процессов, которые называют тратой на дыхание, оцениваемая общим количеством С02, выделенного организмом. Значительно меньшая часть идет на образование тканей и некоторого запаса питательных веществ, т. е. на рост. Остальная часть пищи выделяется в виде экскрементов. Кроме того, значительная часть энергии рассеивается в виде тепла при химических реакциях в организме и особенно при активной мышечной работе. В конечном итоге вся энергия, использованная на метаболизм, превращается в тепловую и рассеивается в окружающей среде.
Таким образом, большая часть энергии при переходе с одного трофического уровня на другой, более высокий, теряется.
Приблизительно потери составляют около 90%: на каждый следующий уровень передается не более 10% энергии от предыду, щего уровня. Так, если калорийность продуцента 1000 Дж, то при попаданиии в тело фитофага остается 100 Дж, в теле хищника уже 10 Дж, а если этот хищник будет съеден другим, то на его долю останется лишь 1 Дж, т. е. 0,1 % от калорийности растительной пищи.
Однако такая строгая картина перехода энергии с уровня на уровень не совсем реальна, поскольку трофические цепи экосистем сложно переплетаются, образуя трофические сети. Но конечный итог: рассеивание и потеря энергии, которая, чтобы существовала жизнь, должна возобновляться.
Нельзя забывать еще и мертвую органику, которой питаетcя значительная часть гетеротрофов. Среди них есть и сапрофаги и сапрофиты (грибы), использующие энергию, заключен\ную в детрите. Поэтому различают два вида трофических цепей: цепи выедания, или пастбищные, которые начинаются с поедания фотосинтезирующих организмов, и детритные цепи разложения, которые начинаются с остатков отмерших растений, трупов и экскрементов животных.
Таким образом, входя в экосистему, поток лучистой энергии разбивается на две части, распространяясь по двум видам трофических сетей, но источник энергии общий — солнечный свет.
Источник