Меры борьбы с загрязнением воздушного бассейна

Методы борьбы с загрязнением атмосферы

Для защиты воздушного бассейна от негативного антропогенного воздействия в виде загрязнения его вредными веществами используются следующие меры.

К основным и наиболее эффективным из них принадлежат экономические методы. Во многих развитых странах действует продуманная система поощрительных и запретных мероприятий, которые помогают избегнуть загрязнений. Фирмы, которые внедряют безотходные технологии, современные системы очистки и т.п., имеют большие налоговые льготы, что дает им преимущества над конкурентами.

Вместе с тем фирмы и предприятия, которые загрязняют атмосферу, вынуждены платить очень большие налоги и штрафы. Во многих странах, кроме государственных санитарно-эпидемиологических служб, за состоянием атмосферы следят также многочисленные общественные организации («зеленые» общества).

В Швейцарии, например, владелец фабрики может получить письмо такого содержания: «Ваша фабрика загрязняет воздух свыше определенных норм. Если Вы не установите очистительные фильтры и не ликвидируете загрязнения, наша экологическая организация начнет в печати кампанию против Вашей продукции, в результате чего ущерб Вашей фирмы превысит те затраты, которые Вам нужны для улучшения системы очищения». Как правило, такие предупреждения действуют очень эффективно, поскольку в этой стране получить ярлык загрязнителя природной среды, значит, обречь себя к быстрому экономическому краху — никто не будет покупать продукции «грязной» фирмы. Огромное внимание на Западе отводится также воспитательной и просветительской работе. В той же Швейцарии, например, детям с самого раннего возраста объясняют, что для их страны, где практически нет никаких полезных ископаемых, чистый воздух, чистые озера и реки являются основным национальным богатством. Всему миру известны горные швейцарские курорты с их хрустально чистым воздухом, ослепительно-белыми лыжными трассами, горными озерами небесной голубизны. Каждый швейцарец буквально с молоком матери впитывает любовь к своей прекрасной стране и для него кощунством является даже сама мысль о том, что можно посягнуть на эту красоту и чистоту.

Выделяют также организационные, технологические и другие методы борьбы с загрязнениями атмосферы:

• уменьшение количества ТЭС за счет строительства мощных, обеспеченных новейшими системами очищения и утилизации (полезного использования) газовых и пылевых выбросов. Как известно, одна мощная ТЭС загрязняет воздух меньше, чем сотня котельных той же суммарной мощности. Газы, которые выходят из топок ТЭС, прежде чем попасть в атмосферу, очищаются в специальных установках. Некоторые страны даже имеют от этого экономическую выгоду. Например, Франция обеспечивает свои нужды в серной кислоте, улавливая ее с отходящих газов ТЭС (собственных месторождений серы, из которой в других странах изготавливается серная кислота, во Франции нет);

• очищение угля от пирита (сернистого колчедана (FеS2)) перед его сжиганием в топках ТЭС. Это становится необходимо в связи с использованием для ТЭС угля низшего качества со значительным содержимым пирита (окисляясь в топках ТЭС, пирит раскладывается с выделением S02). В результате эффективного очищения угля от пирита содержимое оксидов серы в дымах ТЭС уменьшается на 98-99 %;

• замена угля и мазута для ТЭС экологически чистым топливом — природным газом. ТЭС, которые работают на природном газе, выбрасывают в атмосферу только С02 и оксиды азота (последние также можно уловить из дыма), и не загрязняют воздух другими вредными выбросами;

• регулирование двигателей внутреннего сгорания в автомобилях, установление на них катализаторов, которые нейтрализуют угарный газ (СО) до С02; замена экологически опасного бензина (который загрязняет воздух свинцом) менее вредным топливом;

• озеленение городов и поселков, устройство санитарно-защитных зон;

• архитектурно-планировочное решения промышленных районов в черте города. Нужно располагать их по возможности дальше один от другого, а между ними обязательно создавать зоны зеленых насаждений. Автомобильные трасы с напряженным движением (особенно грузовиков) необходимо планировать в обход жилых районов;

• учет процессов самоочищения воздуха;

• учет климата рельефа и взаимного разложения источников загрязнения;

• ограничение деятельности вредных производств;

• применение дополнительных средств очистки и нейтрализации выбросов в атмосферу;

• применение более современных машин, экологически чистых технологий (дизельные, паровые, газотурбинные, на энергии электрических аккумуляторов, автомобили на солнечных элементах);

• применение комплексной и глубокой переработки сырья;

Читайте также:  Летний тент для бассейна

• разработка экологических нормативов и стандартов;

• эффективное законодательство в области ООС;

• проведение мониторинга ОС и многие другие

Наиболее радикальная мера охраны воздушного бассейна от загрязнения — экологизация технологический процессов: в первую очередь создание замкнутых технологических цик­лов, безотходных и малоотходных технологий, исключающих попадание в атмосферу вредных загрязняющей веществ.

Дата добавления: 2016-02-02 ; просмотров: 6712 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Борьба с загрязнением воздушного бассейна

В зависимости от технологии производства и местонахождения предприятия могут потребоваться (по отдельности или в сочетании) следующие методы уменьшения выбросов загрязнителей в атмосферу до приемлемых уровней:

· использование каплеотбойников из проволочной сетки;

· сжигание газообразных загрязнителей;

· чистка воздушной струей или десорбция паром;

· абсорбция [Мазур, 1996].

3.2.3. Борьба с загрязнением водных объектов

Могут применяться следующие варианты обезвреживания и очистки сточных вод:

— очистка и повторное использование воды;

— обезвоживание ила и шлама;

— выпаривание сточных вод;

— осаждение, флокуляция, фильтрование твердых частиц;

— нейтрализация кислых или щелочных сточных вод;

— использование очищенных сточных вод в сельском хозяйстве;

— денитрификация сточных вод [Очистка, 1989].

3.3. Новое В ИССЛЕДОВАНИЯХ И ТЕХНОЛОГИЯХ ПРОИЗВОДСТВА

Рынок ДСтП в основном насыщен. Экологические ограничения и поиск но­вых областей использования плитных материалов в строительстве, транспортных средствах, упаковке обусловили такие требования к ним как долговечность, био- и огнезащищенность, высокие санитарно-гигиенические показатели, возмож­ность утилизации. Совершенствование технологии и качества ДСтП происходит на фоне конкуренции с интенсивно развивающимся производством ДВП средней плотности (МОР) [Леонович, 1999].

К слагаемым повышения физико-механических характеристик ДСгП сле­дует отнести сохранение качества древесины в частицах при их получении, гео­метрию частиц, создание механизма перераспределения напряжений при дефор­мации, направлен­ное изменение свойств отверждающегося связующего в тонких слоях, граничащих с древесной частицей. Исследованиями, выполненными с использованием электронной микроскопии установили, что степень разрушения древесинного вещества зависит от вида и режима работы стружечных станков, способа получения стружки. Прочность частиц значительно ниже прочности исходной древесины. Отсутствие сплошности в клеевых швах и дефектность полимерной структуры дополнительно предопределяют заниженную прочность ДСтП по сравнению с древесиной и модельными образцами. Для улучшения качества предлагают использовать безножевые методы получения древесных частиц, изготовлять частицы из шпона, специально получаемого на лущильных станках для последующего дробления. Структура ДСтП из таких частиц в большей мере отвечает условию снижения внутренних напряжений при рациональном распределении связующего по пласти частиц. В ряде работ предлагается химически модифицировать поверхность древесных частиц использованием так называемых аппретов, обрабатывать уксусным ангидридом, наносить лигносульфонаты и другие вещества. Разрабатываются различные приемы создания ориентированной структуры плит из крупноразмерных частиц (OSB) [Древесные, 1999].

В США и Японии доля КФС в общем объеме связующих существенно со­кращается. Это связано с низкой гидролитической устойчивостью смолы и высо­кой эмиссией формальдегида из ДСтП. Использование «маломольных» карбами­доформальдегидных смол (КФС) (низкая доля СН2О) уменьшает токсичность ДСтП, но малоперспективно для усиления прочностных свойств. Вопросы сниже­ния токсичности ДСтП на основе КФС являются предметом особого внимания исследователей. Рассматриваются пути снижения токсичности ДСтП строитель­ного назначения за счет специальных отвердителей — кислых фосфорнокислых со­лей металлов (Аl, Cr, Zn, В). В частности, использование алюмохромофосфата в количестве 2% обеспечивает снижение свободного формальдегида в ДСтП в 2 раза. Гигиенические характеристики ДСтП рассматриваются с точки зрения здо­ровья населения и среды обитания. В КНР разработан способ снижения токсично­сти ДСтП с использованием натриевой соли кислого лигнина в качестве поглоти­теля СН^О. Добавку смешивают с эмульгированным парафином и вводят в стру­жечную массу в количестве 6%. Этим достигают снижения эмиссии формальде­гида с 28,5 до 15.6 мг/100 г плиты. Токсичность КФС снижают в процессе синтеза модифицированием неорганическими электролитами. На структуру и свойства смолы оказывает влияние природа ионов. Лучшие результаты получены в присут­ствии NaСI и КСl. В процессе выдержки смол увеличивается радиус глобулярных частиц и, следовательно, вязкость, незначительно растет время желатинизации. Предметом многих патентов и заявок являются режимы синтеза КФС и добавка различных модификаторов при синтезе: лигносульфонатов, отходов производства ПЭПА, ацетатов меламина, алюмосиликатов, протеинов и крахмала. Среди модификаторов готовой КФС перспективно использование кремнезоля, который переходит в гель в режиме отверждения КФС и при этом сорбирует СН2О. Взаимопроникающие полимерные сетки повышают прочность клеевых швов и получаемых ДСтП [Леонович, 1999].

Читайте также:  Формы для садового фонтана

Водостойкость ДСтП улучшают использованием меламино- или фенолофор-мальдегидных смол. Предлагаются новые решения по синтезу меламинокар-бамидоформальдегидных смол с кислым сульфитом щелочных металлов, обеспечивающие содержание свободного СН2О менее 0,1% , а также по минимизации в рецептуре меламина как более дорогого компонента. Для синтеза фенолоформальдегидной смолы (ФФС) используют отходы производства фенола кумольным методом с ГМТА, смесь фенола и n-третбутилфенола, дифенилолпропан. Синтезированный олигомер модифицируют тунговым маслом или карбамидом; полученное связующее используют исключительно для внутренних слоев ДСтП. Сравнительно редко в качестве связующего используются водные дисперсии: акрилобутадиенстирольные, полиуретановые, поливинилацетатные, винилэфирполимеризатов алкилкарбоксильных кислот с виниловым спиртом. Однако благодаря нетоксичности это направление можно считать перспективным, также как использование связующих на основе изоцианатов. На 11-м международном симпозиуме по клеям в Швейцарии (май 1997 г.) сообщалось о новом поколении полиуретановых дисперсий, разработанных в США. Был представлен форполимер с NСО-группами для сшивки ФФС. При использовании такого совмещенного связующего в ДСтП получен сенсационный результат: его расход был снижен до 3% против 12% в случае использования ФФС. Развивается направление моделирования процессов разрушения структуры ДСтП. Предпринимаются попытки заимствовать из бурно развивающейся механики композиционных материалов подходы к оценке напряженно-деформационного состояния, чтобы в конечном счете подобрать состав макроструктуры композиционного материала с требуемыми свойствами. Предлагается армировать ДСтП волокнами различной природы, измельченным ПВХ, ПММА в виде гранул, а также изменять параметры связующих веществ. Так, для мебели общественного назначения (например, школьных парт, лабораторных столов) требуются «антивандальные» ДСтП — ударопрочные, с высокой динамической вязкостью, хорошо удерживающие шурупы. Достигается это использованием бифункциональных олигомеров (например, диизоцианатов) определенной молекулярной массы и гибкости, чтобы в готовой плите в молекулах сохранялась некоторая сегментальная подвижность в режиме вынужденной эластичности для диссипации механической энергии [Древесные, 1999].

Вспенивающиеся полиизоцианаты при расходе от 10% и выше используются для получения сэндвич-панелей с центральным слоем из ДСтП для замены традиционного конструкционного материала — многослойной фанеры. В качестве наружных слоев используют древесные волокна с повышенным содержанием полиизоцианатов. При расходе 30% плотность панелей может быть снижена до 350 кг/м 3 , тогда панели одновременно служат тепло- и звукоизоляционным материалом.

На Западе уделяется возрастающее внимание вторичной переработке материалов. Технологии утилизации называют «рециклами». Активно действует Европейская Ассоциация конвертирования пластмасс (ЕиРС). Предложено изготовлять ДСтП из железнодорожных шпал 20-летней эксплуатации, из использованной деревянной тары. Сообщается о переработке старых ДСтП и ДВП; плиты измельчают, обрабатывают дереворазрушающими грибами, горячей щелочью и вновь прессуют с добавкой связующего. Очевидно, что в производстве ДСтП использование вторичного сырья должно занять соответствующее место в сырьевой базе предприятий, расположенных в зоне крупных городов [Леонович, 1999].

3.4. БИОЛОГИЧЕСКИ АКТИВНЫЕ СВОЙСТВА СОЕДИНЕНИЙ И ВОЗможНЫЕ НАПРАВЛЕНИЯ ХИМИЧЕСКОЙ ПЕРЕРАБОТКИ ЭКСТРАКТОВ ДРЕВЕСНОЙ ЗЕЛЕНИ

Сосна — одно из древнейших лекарственных растений. По фитонцидной активности она превосходит многие виды древесных пород. В сосновых лесах воздух практически стерилен (200-300 бактериальных клеток на 1 м). Древесная зелень очень богата витаминами как в количественном, так и в качественном отношении. Высокое содержание витамина С и каротина, в частности, и обусловили первые разработки по использованию этого сырья. Однако наличием этих соединений далеко не исчерпываются возможности древесной зелени как сырья для получения биологически активных препаратов.

Моно- и сесквитерпеноиды, входящие в состав как эфирных масел, так и нейтральные соединений древесной зелени сосны, наряду с фитонцидной активностью проявляют высокую токсичность для стволовых вредителей — ксилофагов и репеллентную активность против двукрылых насекомых [Ягодин, 1981; Левин, 1981; Репях, 1988].

Исследования по применению эфирных масел в медицине показали, что препарат, содержащий 10 % эфирного масла сосны в единице лекарственной формы, может быть использован в качестве стимулятора заживления гнойных ран.

Большой интерес представляют вещества, входящие в состав нейтральных соединений древесной зелени сосны. Однако если b-ситостерин, содержащий в древесной зелени как в свободной форме, так и в виде сложных эфиров с высшими жирными кислотами, является уже традиционным для лесохимии продуктом, то остальные соединения до сих пор в России промышленно не выделяются.

Читайте также:  Бассейн бирюлево западное часы работы

Изоабиенол, являясь спиртом лабданового типа строения, относится к ценным исходным соединениям для синтеза душистых производных серой амбры — продукта жизнедеятельности кашалотов, представляющего собой один из наиболее ценных видов сырья для парфюмерии. За последние 10-15 лет интерес к душистым соединениям значительно вырос, о чем свидетельствуют многочисленные публикации. Объясняется это постоянно растущим спросом на них во всем мире и непрерывным сокращением численности кашалотов [Васильев, 1991].

При окислении изоабиенола удалось получить амбреинолид. При обработке серной кислотой амбреинолид перегруппировывается в кислоту, циклизующуюся далее в карбонильное соединение феналановой структуры с сильным , амбровым запахом.

Амбреинолид является важным веществом для синтеза и других ценных душистых соединений. В небольшом количестве он содержится в табаке, но богатых им природных источников нет. Разработано несколько синтезов рацемического амбреинолида. Все они многостадийны, а исходные вещества труднодоступны. Поэтому решение задачи синтеза этого соединения из доступного сырья является важным достижением в создании процессов промышленного синтеза душистых соединений [Васильев, 1991].

Полипренолы идентифицированы в листьях растений, а также бактериях, тканях животных организмов, грибах. Отмечено, что содержание полипренолов более высокое (в 10-50 раз) в хвойных растениях, чем в лиственных. При этом в хвойных растениях полипренолы содержат большее количество (от 10 до 20) изопреновых звеньев в цепи молекулы, чем в лиственных (от 6 до 12). Концентрируясь в мембранах клеток, полипренилфосфаты осуществляют перенос углеводов от соответствующих нуклеотидсахаров с последующей их полимеризацией. Цепи полипренолов входят в состав молекул таких биологически активных соединений, как витамин К, токоферолы, некоторые коферменты. Исследователи относят полипренолы к новому классу низко молекулярных биорегуляторов, играющих исключительно важную роль в продуцировании живыми организмами — от микроорганизмов до млекопитающих — углеводосодержащих биополимеров ряда полисахаридов, гликопротеинов, пентидогликонов и других [Васильев, 1991].

В организме человека эти соединения сконцентрированы в поджелудочной железе, мозге, сердце, почках, печени, селезенке и других тканях. Полипренолы представляют интерес как лекарственные вещества, в частности производные полипренолов могут найти применение в качестве средств, снижающих кровяное давление, противоожоговых средств, а также заживляющих язвы желудка и двенадцатиперстной кишки. Отмечается также высокая эффективность применения этих веществ в качестве кормовых добавок.

Основные исследования по изучению полипренолов проводились в США и Японии. В этих странах полипренолы получают из свиной печени и свиной поджелудочной железы, а также хвои различных растений методом промышленной колоночной хроматографии. Сложность получения таких препаратов и высокая эффективность их применения обусловливают высокую цену на эти продукты.

Фосфолипиды, представленные в основном глицерофосфатидами, и их концентраты применяются в качестве эмульгирующих веществ в биологически активных эмульсиях. Они улучшают качество и ценность продуктов питания. Небольшие добавки этих соединений в корм животных способствуют повышению продуктивности скота и птицы. Поэтому использование древесной зелени в качестве дешевого и доступного сырья для подобного производства является актуальной задачей.

3.4.1. ПЕРЕРАБОТКА ДРЕВЕСНОЙ ЗЕЛЕНИ СОСНЫ И ПЕРСПЕКТИВЫ ЕЕ РАЗВИТИЯ

Использование древесной зелени в настоящее время направлено главным образом на применение ее в качестве кормовой добавки в рационы сельскохозяйственных животных. Питательность древесной зелени сосны составляет 0,28 кормовой единицы в 1 кг, т.е. равна по питательной ценности пшеничной или ржаной соломе.

Хвоя содержит целый ряд ценных биологически активных веществ и является витаминным кормом, а также служит источником фитонцидов. Однако наличие в ней дубильных, смолистых веществ, а также горечей, придающих ей специфический вкус и свойства, ограничивает ее использование в значительных количествах в нативном виде. Кроме того, древесная зелень является продуктом ско-ропортящимся. Срок ее хранения после заготовки не должен превышать в летнее время 5 сут., а в зимнее — 20 сут. [Васильев, 1991].

Для использования полезных свойств этого ценнейшего растительного сырья при одновременном нивелировании отрицательных сторон применяются различные методы переработки древесной зелени. Их можно подразделить на механические и химические.

Источник

Оцените статью