- Проблема влажности в бассейне и пути её решения
- Проблема влажности
- Подбор оборудования для вентиляции и кондиционирования воздуха в помещениях плавательных бассейнов
- Обеспечение правильного воздухораспределения
- Испарение влаги с водных поверхностей в условиях крытых аквапарков
- Генеральный директор
- «Стройинженерсервис»
- Главный специалист
Проблема влажности в бассейне и пути её решения
Проблема влажности
Основной проблемой для помещений плавательных бассейнов является высокая относительная влажность воздуха и, как результат, конденсация паров влаги на холодных поверхностях, вызывающая коррозию, гниение материалов и образование на них грибковой плесени. Кроме того, происходит запотевание окон помещения бассейна, что создает дискомфортные условия для присутствующих людей.
К сожалению, избежать испарения влаги в помещениях плавательных бассейнов невозможно, так как параметры воздуха и воды в них являются крайне благоприятными для этого процесса. Тем не менее, имея правильно спроектированную систему вентиляции, можно добиться минимального испарения воды с поверхности бассейна , а, предусмотрев одновременно надлежащую теплоизоляцию здания, уровень относительной влажности можно регулировать таким образом, чтобы предотвратить разрушение конструктивных элементов здания и создать комфортные условия для людей.
Если требуемые параметры воздушной среды в помещении бассейна 28 °С / 65 % относительной влажности, то точка росы будет равна 21 °С. Поэтому, например, при наружной температуре -10 °С здание должно иметь очень хорошую теплоизоляцию, чтобы избежать конденсации капель влаги Помимо необходимости поддержания на должном уровне параметров воздушной среды в бассейне, следует также принимать во внимание стоимость системы, обеспечивающей заданные условия.
Плавательные бассейны проектируются и строятся в соответствии с многочисленными требованиями, при этом особое внимание уделяется необходимым параметрам воздушной среды, которые определяются с учетом интересов различных групп людей.
Подбор оборудования для вентиляции и кондиционирования воздуха в помещениях плавательных бассейнов
При определении надлежащих параметров воздушной среды в бассейне следует учитывать как проблемы влажности, так и эксплуатационные расходы . Для минимального испарения влаги с поверхности воды необходимо, чтобы температура воздуха в бассейне всегда была выше температуры воды, причем, чем выше эта разница температур, тем меньше будет интенсивность испарения влаги. Однако для достижения наиболее экономичных и комфортных условий эта разница температур должна составлять не более 2–3 °С.
Обычно температура воздуха в помещениях общественных бассейнов 29–30 °С, а температура воды на 1–2 °С ниже. Температура воды в лечебных бассейнах 35–37 °С.
Назначением вентиляционной установки является поддержание требуемой температуры и влажности воздуха с обеспечением его хорошего качества. Воздух в помещении плавательного бассейна всегда имеет более высокую влажность по сравнению с наружным. Из этого следует, что при подаче в помещение расчетного количества свежего воздуха можно поддерживать относительную влажность на заданном уровне. Этот процесс довольно энергоемкий, поэтому необходимо утилизировать как можно больше тепловой энергии вытяжного воздуха и избегать избыточного воздухообмена.
t° воды | Интенсивность испарения с поверхности бассейна (г/м2) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Температура воздуха °С / Относительная влажность % | ||||||||||||||
°С | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |||||||
% отн. вл. | 50 | 60 | 50 | 60 | 50 | 60 | 50 | 60 | 50 | 60 | 50 | 60 | 50 | 60 |
22 | 204 | 182 | 197 | 174 | 190 | 165 | 182 | 156 | ||||||
23 | 217 | 194 | 209 | 187 | 203 | 178 | 194 | 169 | 187 | 158 | ||||
24 | 230 | 108 | 223 | 200 | 216 | 191 | 208 | 182 | 118 | 172 | 192 | 162 | ||
25 | 235 | 213 | 229 | 204 | 221 | 195 | 213 | 185 | 205 | 175 | 196 | i6 | ||
26 | 244 | 219 | 236 | 210 | 228 | 200 | 220 | 190 | 211 | 179 | ||||
27 | 250 | 223 | 243 | 215 | 235 | 205 | 226 | 194 | ||||||
28 | 259 | 230 | 250 | 221 | 241 | 209 | ||||||||
29 | 268 | 238 | 259 | 227 | ||||||||||
30 | 277 | 244 |
При подборе оборудования следует в первую очередь рассчитать интенсивность испарения влаги с водной поверхности, а затем на основании полученной величины, определить максимальный объем свежего воздуха, необходимый для подачи в помещение.
Как уже отмечалось, испарение влаги с поверхности самого бассейна, а также с поверхности сырых и мокрых материалов и предметов, используемых в помещении, является основным фактором, влияющим на влажность окружающего воздуха. Интенсивность испарения зависит от площади водоема, температуры воды, влажности воздуха, скорости воздушного потока и активности купающихся. Для расчета количества испаряющейся влаги существует достаточно много расчетных и эмпирических формул. В нижеприведенной таблице, которая может помочь при необходимости быстрого подбора оборудования, приведены значения интенсивности испарения, полученные на основании формулы стандарта VDI-2089 (Общество немецких инженеров), используемого для расчета размеров закрытых плавательных бассейнов.
Интенсивность испарения рассчитывается следующим образом:
- А = Площадь водной поверхности бассейна (м 2 ),
- P B = Давление водяных паров насыщенного воздуха при температуре воды в бассейне (гПа),
- P L = Парциальное давление водяных паров при заданных температуре и влажности воздуха (гПа),
- e = Эмпирический коэффициент [г/(м 2 × час × гПа)]:
- 0,5 — закрытая поверхность бассейна,
- 5 — неподвижная поверхность бассейна,
- 15 — небольшие частные бассейны с ограниченным количеством купающихся,
- 20 — общественные бассейны с нормальной активностью купающихся,
- 28 — бассейны для отдыха и развлечений,
- 35 — бассейны с водяными горками и значительным волнообразованием.
Расход наружного воздуха, требуемый для удаления испаряющейся влаги, можно рассчитать следующим образом:
- m L = Массовый расход наружного воздуха (кг/сек),
- m W = Массовый расход вытяжного воздуха (кг/сек),
- Х u = Влагосодержание наружного воздуха (г/кг),
- X j = Влагосодержание воздуха в помещении (г/кг).
Влагосодержание наружного воздуха — Х u в зависимости от времени года колеблется от 2–3 г/кг зимой до 11–12 г/кг летом. На практике следует ориентироваться на величину Х u около 9 г/кг, поскольку ее превышение наблюдается в течение непродолжительного времени, составляющего лишь 15 % от всего годового периода. Эта величина рекомендуется стандартом VDI-2089. Кроме того, конденсация влаги в летнее время не является значительной, поэтому величина X j может быть принята немного выше расчетной.
Обеспечение правильного воздухораспределения
Такие факторы, как подвижность воздуха и особенно распределение притока в помещении плавательного бассейна , представляют не меньшую важность при проектировании системы вентиляции, чем выбор её с надлежащим расходом воздуха.
Защита материалов здания от разрушений является первичным назначением системы вентиляции плавательного бассейна. Подаваемый в помещение после обработки в системе воздух — сухой и теплый, поэтому выпадение влаги из него не происходит с такой же легкостью, как из застойного, уже охладившегося воздуха Обработанный приточный воздух лучше всего подавать по периметру помещения бассейна с трех сторон, располагая воздухораспределительное оборудование на небольшой высоте. Вытяжку предпочтительно обустраивать на более высоком уровне с четырех сторон
«ИНТЕХ» — инжиниринговая компания. На нашем ресурсе air-ventilation.ru Вы можете узнать необходимую информацию и получить коммерческое предложение.
Отзывы о компании ООО «ИНТЕХ»:
Информация, размещенная на сайте, носит ознакомительный характер и ни при каких условиях не является публичной офертой.
© 2003-2021 ИНТЕХ — Вентиляция и кондиционирование. Контакты
Источник
Испарение влаги с водных поверхностей в условиях крытых аквапарков
Испарение влаги с водных поверхностей в условиях крытых аквапарков.
Генеральный директор
«Стройинженерсервис»
Главный специалист
Профессор кафедры ВИТУ
В условиях крытых аквапарков различные бассейны и развлекательные водные аттракционы являются основными источниками значительных влагопоступлений, которые необходимо учитывать при проектировании их систем вентиляции и кондиционирования воздуха. Недостаточный учет влагопоступлений от указанных источников может привести в период эксплуатации крытых аквапарков к постоянному возникновению конденсации влаги из воздуха на внутренних поверхностях различных строительных конструкций и к несоблюдению допустимого температурно-влажностного режима воздушной среды в зоне пребывания купающихся. Наш опыт проектирования систем вентиляции и кондиционирования воздуха крытых аквапарков показал, что для оценки их влагопоступлений требуется проведение тщательного анализа:
– технологических режимов использования бассейнов и водных аттракционов;
– рекомендуемых расчетных зависимостей для оценки испарения влаги с водных поверхностей с целью установления возможности их применения для условий действующих крытых аквапарков.
В этой связи следует отметить, что наибольшие затруднения возникли с установлением (обоснованным выбором) расчетных зависимостей для определения влагопоступлений с водных поверхностей.
В настоящее время имеется множество формул, рекомендуемых для оценки испарения влаги, которые основаны на результатах лабораторных экспериментов. Возникло сомнение, что лабораторные эксперименты учитывают всю полноту условий, при которых происходит испарение влаги с водных поверхностей бассейнов и аттракционов в условиях крытых аквапарков. Поэтому было решено проанализировать расчетные зависимости для определения интенсивности испарения влаги с водных поверхностей, рекомендуемые различными нормативными документами, существующими в отечественной и зарубежной практике. При проведении анализа особое внимание было обращено на условия получения и возможные области применения рекомендуемых расчетных зависимостей для оценки испарения с водных поверхностей.
В отечественной практике для расчета количества влаги, испаряющейся с открытой водной поверхности, широкое применение получила зависимость, предложенная сушильной лабораторией Всесоюзного Теплотехнического Института (г. Москва), которая базируется на результатах обширных опытов, проведенных при следующих условиях:
– температура воздуха – t=40÷225 0С;
– влагосодержание воздуха – d=10÷25 г/кг;
– скорость движения воздуха – υ=1÷7,5 м/с.
В опытах обеспечивались условия испарения близкие к адиабатическому процессу. Разработанная при этом зависимость была включена в «Указания по проектированию отопления и вентиляции» (СН 7-57), а затем в «Справочник проектировщика. Вентиляция и кондиционирование воздуха» кн. 1, изд. 1992 г. (СПВ) в следующем виде:
G=7,4(аt+0.017∙υ)∙(Pн-Рв)∙∙F, (1)
где G – количество испаряющейся влаги с открытой водной поверхности площадью F (м2), кг/ч;
υ – относительная скорость движения воздуха над водной поверхностью, м/с. Для залов бассейнов, согласно СНиП 2.08.02-89*, можно рекомендовать не более 0,2 м/с;
аt – коэффициент, зависящий от температуры воды в бассейне (0,022÷0,028 при tводы=28-40 0С);
Pв – парциальное давление водяного пара в воздухе рабочей зоны помещения, кПа;
Pн – давление насыщенного водяного пара в воздухе при температуре, равной температуре воды, кПа;
Как отмечает проф. в книге «Вентиляция, увлажнение и отопление на текстильных фабриках» (изд. 1953г.) формула (1) представляет собой модифицированную формулу Дальтона, которая имеет следующий вид:
G= , (2)
где С – коэффициент испарения (0,86 – при сильном движении воздуха; 0,71 – при умеренном движении воздуха; 0,55 – при спокойном состоянии воздуха).
Эта зависимость была получена Дальтоном в результате проведения им многочисленных опытов по испарению воды, которая подогревалась в круглых чашах ø8,25 и ø15,24 см на жаровнях до различной температуры. При этом в опытах скорость движения воздуха над поверхностью испарения изменялась произвольно. Поэтому в формуле Дальтона не указывается количественные характеристики скорости движения воздуха над поверхностью испарения. В книге «Вентиляция» (изд. 1959 г.) проф. дана оценка возможных скоростей движения воздуха в опытах Дальтона:
– при сильном движении воздуха скорость воздуха могла составлять 1,57 м/с;
– при умеренном движении воздуха — 1,13 м/с;
– при спокойном состоянии воздуха — 0,58 м/с.
На основании этих данных было установлено значение коэффициента испарения С=0,4 при скорости движения воздуха над поверхностью испарения равной 0,2 м/с.
В зарубежной практике для расчета испаряющейся влаги с водной поверхности бассейнов применяются формулы, приведенные в «Руководстве по проектированию» фирмы Dantherm, которые дают возможность учитывать влияние занятости бассейна купающимися и их активности на испарение влаги. В Руководстве отмечается, что в Германии используется для расчета испарения воды с водяной поверхности крытых плавательных бассейнов формула стандарта VDI 2086, разработанная обществом немецких инженеров:
где ε – эмпирический коэффициент испарения воды с водной поверхности бассейна, г/м2∙ч∙мбар, зависящий от подвижности водной поверхности, количества купающихся и их активности.
Рекомендуется принимать следующие значения коэффициента e:
e=35 – для бассейнов с горками и значительным волнообразованием;
e=28 – при средней подвижности водной поверхности для общественных бассейнов и нормальной активности купающихся (бассейны для отдыха и развлечений);
e=13 – при малоподвижной водной поверхности для небольших плавательных бассейнов с ограниченным количеством купающихся;
e=5,0 – для неподвижной воды в бассейнах;
e=0,5 – закрытая поверхность воды в бассейнах.
Следует отметить, что формула (3) является также модификацией формулы Дальтона, а ее эмпирический коэффициент e отражает влияние на процесс испарения влаги, как скорости движения водной поверхности, так и скорости движения воздуха ввиде относительной скорости движения указанных сред.
В Великобритании для расчета количества испаряющейся влаги с водной поверхности бассейнов, как отмечается в «Руководстве по проектированию» фирмы Dantherm, чаще используются формулы Бязина-Крумме, которые установлены на основе натурных измерений интенсивности испарения влаги, проведенных в действующих бассейнах. Для дневного периода (период использования бассейна) рекомендуется формула Бязина-Крумме в следующем виде:
G= [0,118+0,01995∙А∙]∙F , (4)
где А – коэффициент занятости бассейна купающихся, зависящий от количества купающихся n (чел) и от площади бассейна F (м2);
DР – разность между давлением водяных паров насыщенного воздуха при температуре воды в бассейне и парциальным давлением водяных паров в воздушной среде бассейна, мбар.
Для ночного периода (в период бездействия бассейна) рекомендуемая формула Бязина-Крумме имеет вид:
G= [-0,059+0,0105∙]∙F (5)
Нами были выполнены расчеты интенсивности испарения влаги с водной поверхности бассейнов в период их использования (в дневное время) по формулам (1÷4). При этом были рассмотрены три типа бассейнов и водных аттракционов в зависимости от температуры применяемой воды:
тип 1 – общие бассейны водных аттракционов, tводы=30 0С;
тип 2 – детские бассейны, tводы=35 0С;
тип 3 – бассейны «Джакузи», tводы=40 0С.
В качестве исходных данных в расчетах интенсивности испарения влаги при использовании бассейнов были приняты:
Рн – давление насыщенных водяных паров в воздухе при температуре воды в бассейнах (для бассейнов 1 типа — 37,8 мбар; 2 типа — 42,4 мбар; 3 типа — 73,7 мбар);
Рв – парциальное водяного пара при допустимых параметрах воздуха для всех типов бассейнов. В теплый период года Рв=25,4 мбар (tдоп=30 0С и jдоп=60%), в холодный период года Рв=20,1 мбар (tдоп=29 0С и jдоп=50%).
Таким образом, расчетные значения DР=( Рн- Рв) для различных типов бассейнов составляют для бассейнов 1 типа от 12 до 18 мбар; 2 типа — от 18 до 23 мбар; 3 типа — от 48 до 54 мбар.
При расчетах интенсивности испарения влаги были приняты:
– в формуле (1) среднее значение коэффициента аt=0,025 при скоростях движения воздуха υ=0,2 ; 0,9 ; 1,5 м/с и Рбар=101,3кПа;
– в формуле (2) скорости движения воздуха υ=0,2 ; 0,9 ; 1,5 м/с, а значение Рбар=760 мм. рт. ст.;
– в формуле (3) значения коэффициента e=35 ; 28 и 19;
– в формуле (4) значения занятости бассейнов купающимися: А=0,5 ; 1,0.
Результаты расчетов интенсивности испарения влаги с водных поверхностей по формулам (1÷4) представлены на графиках рис. 1, сопоставление которых позволяет отметить следующее.
Результаты расчетов испарения влаги с водной поверхности по формулам стандартаVDI (при e=35; 28 и 19) и СПВ (при скорости движения воздуха над водной поверхностью υ=1,5; 0,9 и 0,2 м/с) совпадают с результатами расчетов по формуле Дальтона (при скоростях движения воздуха υ=1,5; 0,9 и 0,2 м/с). Это свидетельствует о том, что указанные формулы получены на основании результатов лабораторных опытов, аналогичных опытам Дальтона. Для этих лабораторных опытов характерны следующие условия:
– спокойная гладкая (без волнообразования) водная поверхность испарения, над которой при движении воздуха постоянно существует неразрушаемый пограничный слой воздуха с давлением насыщенного водяного пара при температуре поверхности воды;
– температура поверхности воды ниже температуры основной массы воды на несколько градусов, т. е. процесс тепломассообмена между водной поверхностью и движущемся над ней воздухом «стремиться» к адиабатическому процессу.
Область результатов расчетов интенсивности испарения влаги с водной поверхности по формуле Бязина-Крумме (при значениях коэффициента занятости бассейна купающимися А от 0,5 до 1,0) «лежит» ниже области результатов интенсивности испарения влаги, установленных по формулам Дальтона, СПВ и стандарта VDI. Это указывает на наличие принципиальных отличий процесса тепломассообмена между водной поверхностью и воздушной средой действующих бассейнов от процесса тепломассообмена при проведении опытов в лабораторных условиях. К этим принципиальным отличиям процесса тепломассообмена в действующих бассейнах и водных аттракционах следует отнести:
– постоянное разрушение водной поверхности (образование волн, брызг и капель), интенсивность которого зависит от занятости бассейнов купающимися и их активности;
– постоянное разрушение над водной поверхностью пограничного слоя воздуха с давлением насыщенного водяного пара при температуре, равной температуре воды в бассейне, которая устанавливается в результате ее перемешивания купающимися. Поэтому процесс тепломассообмена между водной поверхностью и движущимся над ней воздухом в этом случае не «стремится» к адиабатическому процессу, а по существу является некоторым политропическим процессом, «направленным» на температуру воды, устанавливающуюся во всей ее массе в бассейне.
Результаты расчетов интенсивности испарения влаги, полученные по формулам Дальтона, СПВ и стандарта VDI при скорости движения воздуха υ=0,2 м/с, пересекают область результатов расчетов интенсивности испарения влаги, полученных по формуле Бязина-Крумме при значениях коэффициента занятости бассейна купающимися А от 0,5 до 1,0. Характер пересечения этих результатов подчеркивает отмеченное выше принципиальное отличие условий испарения влаги при проведении лабораторных опытов от условий испарения влаги в действующих бассейнах.
Вышеизложенное позволяет сделать вывод о том, что наиболее объективные данные об интенсивности испарения влаги с водных поверхностей бассейнов и аттракционов аквапарков в период их использования можно получить при их оценке по формуле Бязина-Крумме (формула 4). При этом необходимо принимать значения занятости бассейнов купающимися А, исходя из существующих норм их использования. В соответствии с данными «Руководства по проектированию» фирмы Dantherm значения занятости бассейнов купающимися А определяются по формуле:
А=×n , (6)
где 6,0 – нормативное значение площади бассейна, приходящейся на одного купающегося, (м2/чел) при коэффициенте занятости А=1.
Для большинства общественных бассейнов в качестве расчетной величины рекомендуется принимать значение коэффициента занятости бассейна А=0,5.
Нами были произведены расчеты интенсивности испарения влаги с водной поверхности бассейнов в период их бездействия (в ночное время) по формулам (1÷3 и 5). В этом случае исходные данные были приняты те же, что и для периода использования бассейнов. При этом при в расчетах интенсивности испарения влаги были приняты:
– в формуле (1) скорость движения воздуха υ=0;
– в формуле (2) при скорости движения воздуха υ=0 коэффициент испарения С=0,3;
– в формуле (3) значение коэффициента испарения e=5,0.
Результаты расчетов интенсивности испарения влаги с водной поверхности по формулам (1÷3 и5) представлены на графиках рис. 2, сопоставление которых позволяет отметить следующее.
Результаты расчетов интенсивности испарения влаги с водной поверхности по формулам Дальтона и СПВ значительно превосходят результаты расчетов интенсивности испарения влаги с водных поверхностей бассейнов по формулам стандарта VDI и Бязина-Крумме. Это обстоятельство можно объяснить тем, что формулы стандарта VDI и Бязина-Крумме более строго учитывают реальные температурно-влажностные условия взаимодействия воздуха с поверхностью воды в период бездействия бассейнов, тогда как формулы Дальтона и СПВ, основанные на результатах лабораторных опытов, эти условия не отражают. Поэтому для расчетов интенсивности испарения влаги с водных поверхностей бассейнов в период их бездействия следует отдавать предпочтение последним формулам и, прежде всего, формуле Бязина-Крумме.
1. Для крытых аквапарков не могут быть рекомендованы зависимости «Справочника проектировщика. Вентиляция и кондиционирование воздуха» по определению интенсивности испарения влаги с водных поверхностей, основанные на результатах опытов, которые не учитывают условия эксплуатации действующих бассейнов и водных аттракционов.
2. При проектировании систем вентиляции и кондиционирования воздуха крытых аквапарков для определения влагопоступлений от водных поверхностей бассейнов и водных аттракционов (в период их использования и бездействия) целесообразно применять формулы Бязина-Крумме, как наиболее полно отражающие процессы испарения влаги в условиях действующих бассейнов.
Источник