- Все плюсы и минусы кавитационного теплогенератора
- Что представляет собой агрегат
- Конструктивные особенности оборудования
- Обзор популярных моделей
- Кавитационный теплогенератор. Устройство и работа. Применение
- Кавитационный теплогенератор: устройство, виды, применение
- Устройство и принцип работы
- Простейшая модель
- Идеальный теплогенератор Потапова
- Роторный теплогенератор
- Трубчатые
- Ультразвуковые
- Применение
- Плюсы и минусы
- КТГ своими руками
- Видео в помощь
Все плюсы и минусы кавитационного теплогенератора
В последнее время большое внимание уделяется альтернативным источникам энергии. Это связано не только и возможно даже не столько для того, чтобы улучшить экологическую обстановку на Земле, сколько с все возрастающими ценами на энергоносители. Хотя многие из потребителей и задумываются над тем, что современное поколение оставит после себя потомкам.
Так или иначе, но использование различных альтернативных источников становится все более популярным. Одним из приборов, работа которого основана на совершенно новом принципе получения энергии, является кавитационный теплогенератор. В последнее время производство таких агрегатов осваивают многие производители и они все в большем количестве появляются на отечественном рынке.
Что представляет собой агрегат
Этот прибор можно назвать вполне приемлемой заменой любого отопительного котла. В нем нагрев воды осуществляется за счет кавитации, в процессе которой в жидкости образуются свободные места, заполняемые пузырьками. Он возникает за счет снижения давления, происходящего в результате увеличения скорости прохождении акустической волны. Однако есть и другие объяснения происхождения. С физической точки зрения этот процесс можно сравнить с закипанием воды, но при этом отличием является тот факт, что падение давления является локальный.
Смотрим видео, сфера применения оборудования:
Сфера использования кавитационных генераторов сегодня не ограничивается только отоплением. Они применяются для очистки отложений внутри теплообменных аппаратов. Это проще и удобнее, чем механический или другой способы.
Обогрев и очистка воды в бассейнах также может осуществляться при помощи теплового насоса. Это происходит за счет кавитационного процесса, протекающего в процессе работы оборудования.
Популярны такие устройства и в промышленной отрасли. Здесь с использованием такой воды, изготавливают бетон, который отличается от произведенного обычным способом более качественными эксплуатационными характеристиками.
Конструктивные особенности оборудования
Что же представляет собой такой агрегат? Основным узлом в нем является кавитационный теплогенератор, выполненный в виде насоса, со специальным профилем проточной части. Проходя через него, вода нагревается. Происходит это за счет формирования вихревого потока. Возникая в нем, кавитационные разрывы приводят к нагреву жидкости. Причем роль теплоносителя может играть любой антифриз.
Смотрим видео, устройство генератора:
Нагрев приводит к изменению химического состава жидкости за счет резкого снижения ее давления. Выделяемая при этом энергия может использоваться для отопления и является достаточно дешевой.
Такие установки, как правило потребляют в 1,5 раза меньше энергии, чем радиаторные и другие системы. При этом нагрев жидкости в них происходит в замкнутом контуре при его прохождении через кавитатор.
Принцип работы таких устройств заключается в превращении одного вида энергии в другой. Она в свою очередь преобразуется в тепловую, причем разница между выделяемой и потребляемой достаточно существенная.
К достоинствам кавитационных теплогенераторов следует отнести возможность их монтажа без каких-либо разрешительных документов. Это связано с тем, что электроэнергия в них используется лишь для работы электродвигателя.
И хотя сегодня ни одна из существующих теорий не может полностью описать процессы, происходящие в кавитаторе, они все же, эксплуатируются по всему миру и причем довольно успешно. Что касается научных исследований в этой сфере, то они сводятся к фиксации особенностей работы тепловых установок такого типа.
Обзор популярных моделей
Не смотря на то, что пока еще процесс кавитации не совсем изучен, оборудование, работающее на его принципах, уже разрабатывается специалистами на многих предприятиях. Причем некоторые модели уже находятся в стадии подготовки к серийному выпуску. Они представляют собой электроустановки, которые используют для отопления и приготовления горячей воды.
Но есть и уже выпускаемые модели. В качестве примера можно рассмотреть кавитационный теплогенератор TC1. Это современный и высокоэффективный прибор, с широким спектром действия. Он может использоваться для систем отопления, вентилирования, приготовления горячей воды.
Прибор укомплектован стандартным двигателем на 3000 об/мин, питающимся от сети в 380 В. Он устанавливается на одной раме с активатором, отвечающим за преобразование механической энергии в тепловую.
Кавитационные теплогенераторы производятся в некоторых из стран СНГ. Причем у различных производителей они имеют свои названия.
Наиболее известны на постсоветском пространстве следующие компании:
- ЮСМАР (Молдова);
- ЮрЛе и Ко (Беларусь);
- Текмаш (Украина);
- Гравитон (Россия).
Но все же купить такой прибор еще довольно сложно, поэтому и цены на них завышены. Например, у бытового кавитационного теплогенератора мощностью до 50 кВт цена составляет в среднем 50-55 тысяч рублей.
Если рассматривать вихревые модели, то они являются более простыми в конструктивном плане, однако и эффективность у такого оборудования несколько ниже. Сегодня на рынке продукцию такого класса предлагает всего несколько компаний. Среди них роторный гидроударный насос марки Радекс выпускает НПП Новые технологии.
Электрогидроударные и гидроударные модели Торнадо и Vektorplus производят в белорусской компании Юрле-К. Купить их можно в дилерских центрах и магазинах в странах СНГ.
Аналогичное оборудование выпускается и некоторыми российскими заводами. В их линейку входят в основном агрегаты небольшой мощности. Из них самой малой является ВТГ – 2,2. Она способна обогревать здание объемом не более 90 м³. Принцип его работы идентичен аналогичным приборам. На ротор двигателя теплогенератора установлен шнек, через него проходит поток жидкости. После нагрева она подается в трубопровод отопления. Стоимость этой модели не превышает 34 тысяч рублей.
К аппаратам со средними показателями мощности относятся кавитационные теплогенераторы ВТГ – 30. Эта модель рассчитана на дома объемом до 1400 м³. Однако с ней в комплекте необходимо приобретать шкаф управления. В этом случае процесс нагрева жидкости будет полностью автоматизирован. Но и стоит такой прибор около 150 тысяч рублей.
Смотрим видео немного о вихревых теплогенераторах:
Ижевские производители выпускают кавитационные вихревые теплогенераторы ИТПО. Они комплектуются двигателем и цилиндрической насадкой. Работая в режиме насоса, агрегат нагнетает жидкость. Затем происходит создание вихревого потока, остановка которого возможна при помощи тормозного устройства. Именно на этом этапе и осуществляется нагрев теплоносителя.
Если верить заявлениям производителя, то КПД для этой модели может достигать 150%. Возможно именно этот показатель и привлекает к еще новому оборудованию большую аудиторию потребителей, желающих кавитационный теплогенератор купить для отопления собственного дома.
Источник
Кавитационный теплогенератор. Устройство и работа. Применение
Кавитационный теплогенератор – специальное устройство, в котором применяется эффект нагрева жидкости кавитационным способом. То есть это эффект, при котором образуются микроскопические пузырьки пара в областях локального уменьшения давления в воде. Это может наблюдаться во время вращения насосной крыльчатки или вследствие воздействия на воду звукового колебания. В результате этого жидкость нагревается, а это значит, что при помощи нее можно обогревать дом или квартиру.
На сегодняшний день кавитационный теплогенератор считается инновационным изобретением. Однако уже практически век тому назад ученые размышляли над тем, как можно использовать эффект кавитации. Впервые подобную установку собрал Джозеф Ранк в 1934 году. Именно он отметил, что входные и выходные температуры воздушных масс этой трубы отличаются. Советские ученые несколько усовершенствовали трубы Ранка, использовав для этой цели жидкость. Опыты показали, что установка позволяет быстро разогревать воду. Однако на тот период необходимость в такой установке была минимальна, ведь энергия стоила копейки. Сегодня же, вследствие удорожания электричества, нефти и газа, потребность в таких установках возрастает.
Виды
Кавитационный теплогенератор по своему устройству может быть роторным, трубчатым или ультразвуковым:
- Роторные устройства представляют агрегаты, в которых используются центробежные насосы с измененной конструкцией. В качестве статора здесь применяется насосный корпус, куда устанавливается входная и выходная труба. Главным рабочим элементом здесь выступает камера, где размещается подвижный ротор, он работает по принципу колеса.
Роторная установка имеет сравнительно простую конструкцию, однако для эффективной ее работы необходим очень точный монтаж всех его элементов. В том числе здесь требуется точнейшее балансирование двигающегося цилиндра. Необходима плотная посадка роторного вала, а также тщательная выверка и замена пришедших в негодность материалов изоляции. КПД таких устройств не являются довольно большим. Они имеют не очень большой срок службы. К тому же такие агрегаты работают с выделением достаточно большого шума.
- Трубчатые тепловые генераторы осуществляют кавитационное нагревание благодаря продольному расположению трубок. При помощи помпы нагнетается давление во входящую камеру. В результате жидкость направляется через указанные трубки. На входе вследствие этого появляются пузырьки. Во второй камере устанавливается высокое давление. Пузырьки, которые при попадании во вторую камеру разрушаются, вследствие чего они отдают свою тепловую энергию. Эта энергия вместе с паром направляется на обогрев дома. Коэффициент полезного действия подобных конструкций может достигать высоких показателей.
- Ультразвуковые тепловые генераторы. Кавитация здесь образуется благодаря ультразвуковым волнам, которые создает установка. В результате такого принципа работы обеспечиваются минимальные потери энергии. Трения здесь практически нет, вследствие чего коэффициент полезного действия ультразвукового теплового генератора невероятно высок.
Устройство
Кавитационный теплогенератор имеет устройство в зависимости от принципа действия. Типичным и наиболее распространенным представителем роторных тепловых генераторов является центрифуга Григгса. В такой агрегат заливается вода, после чего запускается ось вращения при помощи электрического двигателя. Главным достоинством такой конструкции является то, что привод нагревает жидкость, а также выступает в качестве насоса. Поверхность цилиндра имеет огромное количество неглубоких круглых отверстий, которые позволяют создать эффект турбулентности. Нагревание жидкости обеспечивается благодаря силам трения и кавитации.
Число отверстий в установке зависит от используемой роторной частоты вращения. Статор в тепловом генераторе выполнен в виде цилиндра, который запаян с двух концов, где непосредственно вращается ротор. Существующий зазор между статором и ротором равняется примерно 1,5 мм. Отверстия в роторе необходимы для того, чтобы в жидкости, трущейся о поверхности цилиндра, появлялись завихрения с целью создания кавитационных полостей.
В указанном зазоре также наблюдается и нагревание жидкости. Чтобы тепловой генератор эффективно работал, поперечный размер ротора должен составлять минимум 30 см. В то же время скорость его вращения должна достигать 3000 оборотов в минуту.
В ультразвуковых устройствах для создания эффекта кавитации используется кварцевая пластина. Она под воздействием электрического тока создает колебания звука. Эти звуковые колебания направляются на вход, вследствие чего устройство производит вибрации. На обратной фазе волны создаются участки разряжения, вследствие чего можно наблюдать кавитационные процессы, которые создают пузырьки.
Чтобы обеспечить максимальный коэффициент полезного действия, рабочая камера теплового генератора выполняется в виде резонатора, который настроен на ультразвуковую частоту. Образованные пузырьки моментально переносятся потоком через узкие трубки. Это необходимо, чтобы получить разряжение, так как пузырьки в тепловом генераторе могут быстро смыкаться, отдавая свою энергию обратно.
Принцип работы
Кавитационный теплогенератор позволяет создать процесс, во время которого в жидкости создаются пузырьки. Если рассматривать этот процесс, то он сравним с закипанием воды. Однако при кавитации наблюдается локальное падение давления, что и приводит к появлению пузырьков. В тепловом генераторе формируются вихревые потоки, вследствие них происходит кавитационный разрыв пузырьков, что приводит к нагреванию жидкости. Нагревание приводит к резкому снижению давления жидкости. Полученная энергия получается довольно дешевой, она отлично подходит для отопления помещений. В качестве теплоносителя можно использовать антифриз.
Для подобных установок обычно нужно примерно в 1,5 раза меньше электрической энергии, чем это необходимо для радиаторных и иных систем. При этом нагревание жидкости осуществляется в замкнутой системе. Работают такие агрегаты посредством преобразования одной энергии в другую. В итоге она превращается в тепловую.
Источник
Кавитационный теплогенератор: устройство, виды, применение
Для отопления помещений или нагрева жидкостей зачастую применяются классические приспособления – тэны, камеры сгорания, нити накаливания и т.д. Но наряду с ними применяются устройства с принципиально иным типом воздействия на теплоноситель. К таким устройствам относится кавитационный теплогенератор, работа которого заключается в формировании пузырьков газа, за счет которых и возникает выделение тепла.
Устройство и принцип работы
Принцип действия кавитационного теплогенератора заключается в эффекте нагрева за счет преобразования механической энергии в тепловую. Теперь более детально рассмотрим само кавитационное явление. При создании избыточного давления в жидкости возникают завихрения, из-за того, что давление жидкости больше чем у содержащегося в ней газа, молекулы газа выделяются в отдельные включения – схлопывание пузырьков. За счет разности давления вода стремиться сжать газовый пузырь, что аккумулирует на его поверхности большое количество энергии, а температура внутри достигает порядка 1000 — 1200ºС.
При переходе кавитационных полостей в зону нормального давления пузырьки разрушаются, и энергия от их разрушения выделяется в окружающее пространство. За счет чего происходит выделение тепловой энергии, а жидкость нагревается от вихревого потока. На этом принципе основана работа тепловых генераторов, далее рассмотрите принцип работы простейшего варианта кавитационного обогревателя.
Простейшая модель
Посмотрите на рисунок 1, здесь представлено устройство простейшего кавитационного теплогенератора, который заключается в нагнетании насосом воды к месту сужения трубопровода. При достижении водяным потоком сопла давление жидкости значительно возрастает и начинается образование кавитационных пузырьков. При выходе из сопла пузырьки выделяют тепловую мощность, а давление после прохождения сопла значительно снижается. На практике может устанавливаться несколько сопел или трубок для повышения эффективности.
Идеальный теплогенератор Потапова
Идеальным вариантом установки считается теплогенератор Потапова, который имеет вращающийся диск (1) установленный напротив стационарного (6). Подача холодной воды осуществляется с трубы расположенной внизу (4) кавитационной камеры (3), а отвод уже нагретой с верхней точки (5) той же камеры. Пример такого устройства приведен на рисунке 2 ниже:
Рис. 2: кавитационный теплогенератор Потапова
Но широкого распространения устройство не получило из-за отсутствия практического обоснования его работы.
Основная задача кавитационного теплогенератора – образование газовых включений, а от их количества и интенсивности будет зависеть качество нагрева. В современной промышленности существует несколько видов таких теплогенераторов, отличающихся принципом выработки пузырьков в жидкости. Наиболее распространенными являются три вида:
- Роторные теплогенераторы – рабочий элемент вращается за счет электропривода и вырабатывает завихрения жидкости;
- Трубчатые – изменяют давление за счет системы труб, по которым движется вода;
- Ультразвуковые – неоднородность жидкости в таких теплогенераторах создается за счет звуковых колебаний низкой частоты.
Помимо вышеперечисленных видов существует лазерная кавитация, но промышленной реализации этот метод еще не нашел. Теперь рассмотрим каждый из видов более детально.
Роторный теплогенератор
Состоит из электрического двигателя, вал которого соединен с роторным механизмом, предназначенным для создания завихрений в жидкости. Особенностью роторной конструкции является герметичный статор, в котором и происходит нагревание. Сам статор имеет цилиндрическую полость внутри – вихревую камеру, в которой происходит вращение ротора. Ротор кавитационного теплогенератора представляет собой цилиндр с набором углублений на поверхности, при вращении цилиндра внутри статора эти углубления создают неоднородность в воде и обуславливают протекание кавитационных процессов.
Рис. 3: конструкция генератора роторного типа
Количество углублений и их геометрические параметры определяются в зависимости от модели вихревого теплогенератора. Для оптимальных параметров нагрева расстояние между ротором и статором составляет порядка 1,5мм. Данная конструкция является не единственной в своем роде, за долгую историю модернизаций и улучшений рабочий элемент роторного типа претерпел массу преобразований.
Одной первых эффективных моделей кавитационных преобразователей был генератор Григгса, в котором использовался дисковый ротор с несквозными отверстиями на поверхности. Один из современных аналогов дисковых кавитационных теплогенераторов приведен на рисунке 4 ниже:
Рис. 4: дисковый теплогенератор
Несмотря на простоту конструкции, агрегаты роторного типа достаточно сложные в применении, так как требуют точной калибровки, надежных уплотнений и соблюдения геометрических параметров в процессе работы, что обуславливает трудности их эксплуатации. Такие кавитационные теплогенераторы характеризуются достаточно низким сроком службы – 2 — 4 года из-за кавитационной эрозии корпуса и деталей. Помимо этого они создают достаточно большую шумовую нагрузку при работе вращающегося элемента. К преимуществам такой модели относится высокая продуктивность – на 25% выше, чем у классических нагревателей.
Трубчатые
Статический теплогенератор не имеет вращающихся элементов. Нагревательный процесс в них происходит за счет движения воды по трубам, сужающимся по длине или за счет установки сопел Лаваля. Подача воды на рабочий орган осуществляется гидродинамическим насосом, который создает механическое усилие жидкости в сужающемся пространстве, а при ее переходе в более широкую полость возникают кавитационные завихрения.
В отличии от предыдущей модели трубчатое отопительное оборудование не производит большого шума и не изнашивается так быстро. При установке и эксплуатации не нужно заботиться о точной балансировке, а при разрушении нагревательных элементов их замена и ремонт обойдутся куда дешевле, чем у роторных моделей. К недостаткам трубчатых теплогенераторов относят значительно меньшую производительность и громоздкие габариты.
Ультразвуковые
Данный тип устройства имеет камеру-резонатор, настроенную на определенную частоту звуковых колебаний. На ее входе устанавливается кварцевая пластина, которая производит колебания при подаче электрических сигналов. Вибрация пластины создает волновой эффект внутри жидкости, который достигая стенок камеры-резонатора и отражается. При возвратном движении волны встречаются с прямыми колебаниями и создают гидродинамическую кавитацию.
Рис. 5: принцип работы ультразвукового теплогенератора
Далее пузырьки уносятся водным потоком по узким входным патрубкам тепловой установки. При переходе в широкую область пузырьки разрушаются, выделяя тепловую энергию. Ультразвуковые кавитационные генераторы также обладают хорошими эксплуатационными показателями, так как не имеют вращающихся элементов.
Применение
В промышленности и в быту кавитационные теплогенераторы нашли реализацию в самых различных сферах деятельности. В зависимости от поставленных задач они применяются для:
- Отопления – внутри установок происходит преобразование механической энергии в тепловую, благодаря чему нагретая жидкость двигается по системе отопления. Следует отметить, что кавитационные теплогенераторы могут отапливать не только промышленные объекты, но и целые поселки.
- Нагревание проточной воды – кавитационная установка способна быстро нагревать жидкость, за счет чего может легко заменять газовую или электрическую колонку.
- Смешение жидких веществ – за счет разрежения в слоях с получением мелких полостей такие агрегаты позволяют добиться надлежащего качества перемешивания жидкостей, которые естественным образом не совмещаются из-за разной плотности.
Плюсы и минусы
В сравнении с другими теплогенераторами, кавитационные агрегаты отличаются рядом преимуществ и недостатков.
К плюсам таких устройств следует отнести:
- Куда более эффективный механизм получения тепловой энергии;
- Расходует значительно меньше ресурсов, чем топливные генераторы;
- Может применяться для обогрева как маломощных, так и крупных потребителей;
- Полностью экологичен – не выделяет в окружающую среду вредных веществ во время работы.
К недостаткам кавитационных теплогенераторов следует отнести:
- Сравнительно большие габариты – электрические и топливные модели имеют куда меньшие размеры, что немаловажно при установке в уже эксплуатируемом помещении;
- Большая шумность за счет работы водяного насоса и самого кавитационного элемента, что затрудняет его установку в бытовых помещениях;
- Неэффективное соотношение мощности и производительности для помещений с малой квадратурой (до 60м 2 выгоднее использовать установку на газу, жидком топливе или эквивалентной электрической мощности с нагревательным тэном).\
КТГ своими руками
Наиболее простым вариантом для реализации в домашних условиях является кавитационный генератор трубчатого типа с одним или несколькими соплами для нагревания воды. Поэтому разберем пример изготовления именно такого устройства, для этого вам понадобится:
- Насос – для нагревания обязательно выбирайте тепловой насос, который не боится постоянного воздействия высоких температур. Он должен обеспечивать рабочее давление на выходе в 4 – 12атм.
- 2 манометра и гильзы для их установки – размещаются с двух сторон от сопла для измерения давления на входе и выходе из кавитационного элемента.
- Термометр для измерения величины нагрева теплоносителя в системе.
- Клапан для удаления лишнего воздуха из кавитационного теплогенератора. Устанавливается в самой верхней точке системы.
- Сопло – должно иметь диаметр проходного отверстия от 9 до 16мм, делать меньше не рекомендуется, так как кавитация может возникнуть уже в насосе, что значительно снизит срок его эксплуатации. По форме сопло может быть цилиндрическим, коническим или овальным, с практической точки зрения вам подойдет любое.
- Трубы и соединительные элементы (радиаторы отопления при их отсутствии ) – выбираются в соответствии с поставленной задачей, но наиболее простым вариантом являются пластиковые трубы под пайку.
- Автоматика включения/отключения кавитационного теплогенератора – как правило, подвязывается под температурный режим, устанавливается на отключение примерно при 80ºС и на включение при снижении менее 60ºС. Но режим работы кавитационного теплогенератора вы можете выбрать самостоятельно.
Рис. 6: схема кавитационного теплогенератора
Перед соединением всех элементов желательно нарисовать схему их расположения на бумаге, стенах или на полу. Места расположения необходимо размещать вдали от легковоспламеняемых элементов или последние нужно убрать на безопасное расстояние от системы отопления.
Соберите все элементы, как вы изобразили на схеме, и проверьте герметичность без включения генератора. Затем опробуйте в рабочем режиме кавитационного теплогенератора, нормальным нарастанием температуры жидкости считается 3- 5ºС за одну минуту.
Видео в помощь
Источник