Интеграл мора при изгибе использование правила верещагина

2)Вывод формулы способа Верещагина для вычисления интеграла Мора.

Если стержень состоит из прямых участков с постоянной в пределах каждого участка жесткостью, эпюры от единич­ных силовых факторов на прямолинейных участках оказыва­ются линейными.

Положим, на участке длиной 1 нужно взять интеграл от произведения двух функцийf1(z)*f2(z):J =f1 (z) f2(z) dz (1)

при условии, что хотя бы одна из этих функций — ли­нейная. Пусть f2(Z) =b +kz. Тогда выражение (1) примет видJ =f1 (z) dz+ kzf1 (z) dz

Первый из написанных интегралов представляет собой пло­щадь, ограниченную кривой f1 (z) (рис. 5.18), или, короче го­воря, площадь эпюрыf1(z):

Второй интеграл характеризует статический момент этой пло­щади относительно оси ординат, т.е.

где Zц.т — координата центра тяжести первой эпюры. Теперь получаем

Но =f2(zц.т.) Следовательно,

Таким образом, по способу Верещагина операция интегри­рования заменяется перемножением площади первой эпюры на ординату второй (линейной) эпюры под центром тяжести первой.

Билет 20

1)Главные осевые моменты инерции. Определение их величин и направлений главных осей.

Оси, относительно которых центробежный момент JXcYc=0, наз-ся главными. Осевые моменты инерции относительно главных осей наз-ся главными моментами инерции.

«+» соответсвует максимальному моменту инерции, « — » — минимальному. После того как сечение вычерчено в масштабе и показано положение главных осей на глаз устанавливается направление осей (которой из двух соответствует максимальный, а которой – минимальный момент инерции).

2) Кручение стержня прямоугольного поперечного сечения (определение напряжений и перемещений).

На рисунке показана полученная методом теории упругости эпюра касательных напряжений для бруса прямоугольного сечения. В углах, как мы видим, напряжения равны нулю. Наибольшие напряжения возникают по серединам больших сторон, в точках А:

τА= τmax=

в=τmax, где а — большая, b — малая сторона прямоугольника. Коэффициентыизависят от отношения сторонКоэффициент β также зависит от этого отношения. Эти данные приводятся в таблицах.

Читайте также:  Получение морского рабочего диплома

Угловое перемещение:

Ф-ла для расчёта касательных напряжений: , где

для расчёта углового перемещения:

Для прямоугольника: ,–геометрические параметры, зависящие от формы сечения.

Потенциальная энергия, накопленная закрученным брусом:

Билет 21

1)Определение перемещений при растяжении-сжатии.

, где W – перемещение, – удлинение, N – внутренняя сила на участке, E – модуль упругости первого рода, А – площадь поперечного сечения на участке.

Для однородного стержня длины , при Е= const, N = const:

2) Расчёт на прочность при изгибе. Понятие о расчётном и нормативном коэффициенте запаса.

По принципу независимости действия сил нормаль­ное напряжение в произвольной точке, принадлежащей попереч­ному сечению бруса и имеющей координаты x, y, опр-ся суммой напр-й, обусловленных моментами Mx и My , т.е. (5.26)

Mx = Msin; My = Mcos, где- угол между плоскостью главного мемента М и осью Ох или Оу. (5.25)

Правило знаков для моментов: момент считается положительным, если в первой четверти координатной плоскости (там, где координаты x и y обе положительны) он вызывает сжимающие напряжения.

Если изгиб чистый, то один из моментов Mx или My равен 0 и выражение (5.26) принимает вид

, где — осевой момент сопротивления,– осевой момент инерции,— расстояние по модулю до наиболее удалённой точки сечения от Ох.

При косом изгибе МХ , МУ .

Уравнение нейтральной линии, т.е. геометрического места точек, где нормальное напряжение принимает нулевые значения, находят, полагая в (5.26)  = 0:

Откуда определяется: (5.27)

Эпюра напряжений в поперечных сечениях бруса линейна, следовательно, максимальные напряжения в сечении возникают в точках наиболее удаленных от нейтральной линии.

Расчёт на прочность при изгибе проводится при условиях:

материал работает одинаково на растяжение и сжатие, т.е.

Условие прочности: , где,, где– допускаемое значение предела текучести,— коэф. запаса.

если неодинаково, то работают два условия:

, где,

Если расчёт проектировочный, то из двух коэффициентов выбирется наибольший. В поверочном – наоборот.

В целях безопасной работы напряжения должны быть ниже предельных значений для данного материала. Таким образом при поверочном расчёте (нахожд. Нормативного коэф. запаса):

, где — предельное кас. напряжение материала,nТ – коэф. запаса,

за расчётный коэффициент принимают [n] > nТ, где [n] – нормативный (предписываемый нормами проектирования конструкций) коэф. запаса.

Источник

Метод Мора. Интеграл Мора

Теорема Кастельяно дала нам возможность определять перемещения. Эту теорему используют для отыскания перемещений в пластинках, оболочках. Однако, вычисление потенциальной энергии громоздкая процедура и мы сейчас наметим более простой и наиболее общий путь определения перемещений в стержневых системах.

Читайте также:  Горбуша нерест белое море

Пусть задана произвольная стержневая система и нам нужно определить в ней перемещение точки по направлению , вызванное всеми силами системы —

Т.к. в общем случае в системе нет силы, приложенной по направлению искомого перемещения, то воспользоваться теоремой Кастельяно нельзя. Добавим к числу прочих сил силу , приложенную к точке и действующую в направлении . Тогда внутренние силовые факторы в системе можно выразить

, где — внутренние силовые факторы в системе от действующих сил;

— внутренние силовые факторы от силы .

Внесем эти выражения в (3)

По теореме Кастельяно:

Учтя, что

получаем выражение:

называемое интегралом Мора.

Для того, чтобы определить перемещение с помощью метода Мора, необходимо:

1) Определить внутренние силовые факторы в системе от заданных сил.

2) Приложить по направлению искомого перемещения единичную обобщенную силу (единичную силу для определения линейного перемещение, пару сил с моментом равным единице для определения углового перемещения и определить внутренние силовые факторы от единичной силы.

3) Подставить полученные ранее выражения в интеграл Мора и определить перемещение.

Для систем, работающих на изгиб: балок, рам, влияние нормальных сил на величину перемещения незначительно и интеграл Мора в этом случае выглядит:

Источник

Определение прогибов и углов поворотов методом Мора

изображение Интеграл Мора сопромат

Интеграл Мора позволяет определять прогибы и углы поворота заданного сечения балки, используя интегральное исчисление. Хотя данный метод предпочтительнее метода начальных параметров, он неудобен из-за необходимости вычисления интеграла. Из интеграла Мора был получен удобное для практического применения правило Верещагина, при котором не нужно вычислять интегралы, а только нужно находить площадь и центр тяжести эпюр.

Получение формулы интеграла Мора

Рассмотрим балку, изображенную на рис. 15.6, а. Обозначим изображение Интеграл Мора сопромати изображение Интеграл Мора сопромат, соответственно, изгибающий момент и поперечную силу, возникающие в заданной балке от действующей на нее группы нагрузок P. Пусть требуется определить прогиб балки (изображение Интеграл Мора сопромат) в точке K.

изображение Интеграл Мора сопромат

Введем в рассмотрение вспомогательную балку (та же балка, но нагруженная только единичной силой либо единичным изгибающим моментом). Нагрузим ее только одной силой (рис. 15.6, б). Единичную силу приложим в точке K, где нужно определить прогиб.

Внутренние усилия, возникающие во вспомогательной балке, обозначим изображение Интеграл Мора сопромати изображение Интеграл Мора сопромат.

изображение Интеграл Мора сопромат

Воспользуемся теперь теоремой о взаимности работ, согласно которой работа внешних сил, приложенных к вспомогательной балке на соответствующих перемещениях заданной балки равна взятой с обратным знаком работе внутренних сил заданной балки на соответствующих перемещениях вспомогательной балки. Тогда .

Читайте также:  Раскраски море и человек

При определении перемещений в балке, как правило, можно пренебрегать влиянием поперечной силы, ( не учитывать второе слагаемое).

Тогда, учитывая, что изображение Интеграл Мора сопромат, окончательно получим формулу интеграла Мора : изображение Интеграл Мора сопромат.

Определение перемещений по формуле интеграла Мора часто называют определением перемещений методом Мора , а саму формулу – интегралом Мора .

Входящие в интеграл Мора изгибающие моменты берутся в произвольном поперечном сечении и поэтому представляют собой аналитические функции от текущей координаты z.

Заметим, что если мы хотим в этой же точке K определить угол поворота поперечного сечения (изображение Интеграл Мора сопромат), то нам необходимо к вспомогательной балке приложить не единичную силу, а единичный момент изображение Интеграл Мора сопромат(рис. 15.6, в).

порядок вычисления перемещений методом Мора:

· к вспомогательной балке в той точке, где требуется определить перемещение, прикладываем единичное усилие. При определении прогиба прикладываем единичную силу изображение Интеграл Мора сопромат, а при определении угла поворота – единичный момент изображение Интеграл Мора сопромат;

· для каждого участка балки составляем выражения для изгибающих моментов заданной (изображение Интеграл Мора сопромат) и вспомогательной (изображение Интеграл Мора сопромат) балок;

· вычисляем интеграл Мора для всей балки по соответствующим участкам;

· если вычисленное перемещение имеет положительный знак, то это означает, что его направление совпадает с направлением единичного усилия. Отрицательный знак указывает на то, что действительное направление искомого перемещения противоположно направлению единичного усилия.

Вычисление интеграла Мора пример

Пусть для шарнирно опертой балки постоянной изгибной жесткости изображение Интеграл Мора сопромат, длиной l, нагруженной равномерно распределенной нагрузкой интенсивностью q (рис. 15.7, а), требуется определить прогиб посредине пролета (изображение Интеграл Мора сопромат) и угол поворота на левой опоре (изображение Интеграл Мора сопромат).

определение прогиба с помощью интеграла Мора

изображение Интеграл Мора сопромат

В том месте, где нам нужно определить прогиб, к вспомогательной балке прикладываем единичную силу (рис. 15.7, б).

изображение Интеграл Мора сопроматЗаписываем выражения для изгибающих моментов для каждого из двух участков (изображение Интеграл Мора сопромат) заданной и вспомогательной балок:

изображение Интеграл Мора сопромат

.

изображение Интеграл Мора сопромат

.

Вычисляем интеграл Мора . Учитывая симметрию балки, получим:

изображение Интеграл Мора сопромат

.

Определение угла поворота методом Мора

изображение Интеграл Мора сопромат

Нагружаем вспомогательную балку единичным моментом , прикладывая его в том месте, где мы ищем угол поворота (рис. 15.7, в).

изображение Интеграл Мора сопромат

Записываем выражения для изгибающих моментов в заданной и вспомогательной балках только для одного участка ():

изображение Интеграл Мора сопромат

;

изображение Интеграл Мора сопромат

.

Тогда интеграл Мора будет иметь вид:

изображение Интеграл Мора сопромат

.

изображение Интеграл Мора сопромат

Положительный знак в выражении для угла поворота поперечного сечения балки указывает на то, что поворот сечения происходит по направлению единичного момента .

Источник

Оцените статью