Интеграл мора физический смысл

45. Потенциальная энергия бруса в общем случае нагружения.

Общий случай нагружения бруса , когда в поперечных сечениях возникают нормальные и поперечные силы , изгибающие и крутящие моменты одновременно .

При разгрузке тела за счет потенциальной энергии производится работа.

Упругое тело является аккумулятором энергии.

Работа силы на упругом перемещении определяется половиной произведения наибольшего значения силы и перемещения ΔL .

Если бы между силой и перемещением не было прямой пропорциональности, вместо коэффициента ½ был бы получен какой —то другой коэффициент. В частности при постоянной силе он равен единице.

Исключая из полученного для U выражения ΔL, найдем

U = P 2 l/2EF;

Энергия упругих деформаций стержня при изгибе определяется работой момента М на взаимном угловом перемещении dθ двух сечений.

dθ = dz/ρ = Mdz/EJx

Если нормальная сила N меняется вдоль оси стержня, то потенциальная энергия деформации должна определяться суммированием по участкам dz. Для элементарного участка dU = N 2 dz /2EF, а для всего стержня

U = L 0∫ N 2 dz /2EF.

Энергетическое соотношение широко используется при определении перемещения в сложных упругих системах.

Установим теперь метод определения перемещений, основанный на вычислении потенциальной энергии деформации. Поставим задачу нахождения перемещений точек упругой системы по направлению действия приложенных к этой системе внешних сил.

Будем решать эту задачу в несколько приемов; сначала рассмотрим более простой случай (Рис.1), когда на балку в сечениях 1, 2, 3. действуют только сосредоточенные силы , ). и т. д. Под действием этих сил балка прогнется по кривой и останется в равновесии.

Прогибы сечений 1, 2, 3. в которых приложены силы , , . обозначим , , . и т. д. Найдем один из этих прогибов, например — прогиб сечения, в котором приложена сила .

Переведем балку, не нарушая равновесия, из положения в смежное положение , показанное на фиг. 328 пунктиром. Это можно сделать различными приемами: добавить новую нагрузку, увеличить уже приложенные и т. д.

Мы представим себе, что для перехода к смежному деформированному состоянию к силе сделана бесконечно малая добавка (Рис.1); чтобы при этом переходе не нарушать равновесия, будем считать, что эта добавка прикладывается статически, т. е. возрастает от нуля до окончательного значения медленно и постепенно.

Нулевой метод компенсационный( метод измерений) — один извариантов метода сравнения с мерой, в котором на нулевой приборвоздействует сигнал, пропорциональный разности измеряемой и известнойвеличин, причем эту разность доводят до нуля. Пример: измерениеэлектрических величин (электродвижущей силы, электрического сопротивления,емкости и др.) с применением потенциометров и измерительных мостов

Интеграл Мора для случая растяжения-сжатия

Интеграл Мора используется для определения перемещений точек произвольных сечений элементов конструкций. Выведем интеграл Мора для случая растяжения-сжатия. Для простоты рассмотрим стержень постоянной жесткости поперечного сечения, нагруженного сосредоточенной силой F.

Читайте также:  Пейзаж море пальмы пляж

Определим перемещение произвольного сечения C стержня, используя теорему Кастилиано. Функция продольной силы для любого сечения этого стержня N=N(F).

Т. к. в точке С отсутствует внешняя сила, использовать напрямую теорему Кастилиано для опредления перемещения нельзя. Поэтому приложим в точке С фиктивную силу Ф.

Функция продольной силы примет вид:

N=N(F)+N1

где N1 – коэффициент пропорциональности.

Определим физический смысл коэффициента N1. Для этого снимем внешнюю силу F, а фиктивную силу Ф приравняем к единице:

Функция продольной силы при F = 0, Ф = 1 будет равна:

Таким образом, N1 – это внутренняя продольная сила, возникающая при условии разгрузки элемента конструкции от внешних сил и нагружении в точку, перемещение которой определяется, единичной безразмерной силой.

Потенциальная энергия деформации, в соответствии с формулой (3.1),

Для определения перемещения точки С используем теорему Кастилиано:

Поскольку на самом деле никакой силы в сечении C нет (т.е. Ф=0), то

Это выражение называется интегралом Мора и применяется для определения перемещений точек произвольных сечений элементов конструкций.

Обобщая на k-тое количество участков по N(z) и A(z), перемещение по методу Мора может быть определено:

Суть метод Мора в следующем. Если необходимо определить перемещение в заданной точке по заданному направлению, то наряду с заданной системой внешних сил в этой точке прикладывается внешнее усилие Ф = 1 в интересующим нас направлении.

Далее составляется выражение потенциальной энергии систе­мы, состоящей из n участков с учетом одновременного действия заданной системы внешних сил и силы Ф :

где Кх , Ку  безразмерные величины, зависящие от геометрической формы сечения и учитывают неравномерность распределения касательных напряжений в сечении при поперечном изгибе. Так, например, для прямоугольника Кх = Ку = 1,2, а для двутавра при изгибе в плоскости его стенки K = F/FCT , где F  площадь всего сечения двутавра, FCT  площадь стенки; Nz , Qx , Qy , Mz , Mx , My  внутренние силовые факторы, возникающие в поперечных сечениях заданной стержневой системы; внутренние силовые факторы, возникающие в поперечных сечениях заданной системы, от действия усилия Ф = 1.

Дифференцируя выражение (6.1) по Ф, и полагая после этого Ф = 0, находим искомое перемещение в искомой точке в нужном направлении.

Источник

Определение прогибов и углов поворотов методом Мора

изображение Интеграл Мора сопромат

Интеграл Мора позволяет определять прогибы и углы поворота заданного сечения балки, используя интегральное исчисление. Хотя данный метод предпочтительнее метода начальных параметров, он неудобен из-за необходимости вычисления интеграла. Из интеграла Мора был получен удобное для практического применения правило Верещагина, при котором не нужно вычислять интегралы, а только нужно находить площадь и центр тяжести эпюр.

Получение формулы интеграла Мора

Рассмотрим балку, изображенную на рис. 15.6, а. Обозначим изображение Интеграл Мора сопромати изображение Интеграл Мора сопромат, соответственно, изгибающий момент и поперечную силу, возникающие в заданной балке от действующей на нее группы нагрузок P. Пусть требуется определить прогиб балки (изображение Интеграл Мора сопромат) в точке K.

изображение Интеграл Мора сопромат

Введем в рассмотрение вспомогательную балку (та же балка, но нагруженная только единичной силой либо единичным изгибающим моментом). Нагрузим ее только одной силой (рис. 15.6, б). Единичную силу приложим в точке K, где нужно определить прогиб.

Читайте также:  Шымбулак высота над уровнем моря

Внутренние усилия, возникающие во вспомогательной балке, обозначим изображение Интеграл Мора сопромати изображение Интеграл Мора сопромат.

изображение Интеграл Мора сопромат

Воспользуемся теперь теоремой о взаимности работ, согласно которой работа внешних сил, приложенных к вспомогательной балке на соответствующих перемещениях заданной балки равна взятой с обратным знаком работе внутренних сил заданной балки на соответствующих перемещениях вспомогательной балки. Тогда .

При определении перемещений в балке, как правило, можно пренебрегать влиянием поперечной силы, ( не учитывать второе слагаемое).

Тогда, учитывая, что изображение Интеграл Мора сопромат, окончательно получим формулу интеграла Мора : изображение Интеграл Мора сопромат.

Определение перемещений по формуле интеграла Мора часто называют определением перемещений методом Мора , а саму формулу – интегралом Мора .

Входящие в интеграл Мора изгибающие моменты берутся в произвольном поперечном сечении и поэтому представляют собой аналитические функции от текущей координаты z.

Заметим, что если мы хотим в этой же точке K определить угол поворота поперечного сечения (изображение Интеграл Мора сопромат), то нам необходимо к вспомогательной балке приложить не единичную силу, а единичный момент изображение Интеграл Мора сопромат(рис. 15.6, в).

порядок вычисления перемещений методом Мора:

· к вспомогательной балке в той точке, где требуется определить перемещение, прикладываем единичное усилие. При определении прогиба прикладываем единичную силу изображение Интеграл Мора сопромат, а при определении угла поворота – единичный момент изображение Интеграл Мора сопромат;

· для каждого участка балки составляем выражения для изгибающих моментов заданной (изображение Интеграл Мора сопромат) и вспомогательной (изображение Интеграл Мора сопромат) балок;

· вычисляем интеграл Мора для всей балки по соответствующим участкам;

· если вычисленное перемещение имеет положительный знак, то это означает, что его направление совпадает с направлением единичного усилия. Отрицательный знак указывает на то, что действительное направление искомого перемещения противоположно направлению единичного усилия.

Вычисление интеграла Мора пример

Пусть для шарнирно опертой балки постоянной изгибной жесткости изображение Интеграл Мора сопромат, длиной l, нагруженной равномерно распределенной нагрузкой интенсивностью q (рис. 15.7, а), требуется определить прогиб посредине пролета (изображение Интеграл Мора сопромат) и угол поворота на левой опоре (изображение Интеграл Мора сопромат).

определение прогиба с помощью интеграла Мора

изображение Интеграл Мора сопромат

В том месте, где нам нужно определить прогиб, к вспомогательной балке прикладываем единичную силу (рис. 15.7, б).

изображение Интеграл Мора сопроматЗаписываем выражения для изгибающих моментов для каждого из двух участков (изображение Интеграл Мора сопромат) заданной и вспомогательной балок:

изображение Интеграл Мора сопромат

.

изображение Интеграл Мора сопромат

.

Вычисляем интеграл Мора . Учитывая симметрию балки, получим:

изображение Интеграл Мора сопромат

.

Определение угла поворота методом Мора

изображение Интеграл Мора сопромат

Нагружаем вспомогательную балку единичным моментом , прикладывая его в том месте, где мы ищем угол поворота (рис. 15.7, в).

изображение Интеграл Мора сопромат

Записываем выражения для изгибающих моментов в заданной и вспомогательной балках только для одного участка ():

изображение Интеграл Мора сопромат

;

изображение Интеграл Мора сопромат

.

Тогда интеграл Мора будет иметь вид:

изображение Интеграл Мора сопромат

.

изображение Интеграл Мора сопромат

Положительный знак в выражении для угла поворота поперечного сечения балки указывает на то, что поворот сечения происходит по направлению единичного момента .

Источник

Большая Энциклопедия Нефти и Газа

Физический смысл интегралов Ариса можно описать лишь весьма приближенно; однако всегда полезно наглядно представить себе факторы, входящие в выражение для высоты, эквивалентной теоретической тарелке. Грубо говоря, интегрирование по t дает время, которое возрастает с увеличением размеров колонки. Это можно объяснить тем, что при увеличении размеров колонки возрастают расстояния, вдоль которых диффундируют молекулы. Однако, несмотря на это, действительное значение Н ( х) определяется эффективной скоростью, значение которой в свою очередь определяется профилем скоростей. [6]

Читайте также:  Море в греции путевки

Обратим внимание на физический смысл интегралов в этом уравнении. Первый интеграл выражает уменьшение секундного расхода через сечение в пограничном слое высотой 8, обусловленное влиянием вязкости. [7]

Для последующего вывода необязательно дать физический смысл Зтого интеграла , но легко сообразить, что он выражает удвоенную работу внешних нагрузок в процессе деформации тела, если эти нагрузки возрастают весьма медленно от начального естественного состояния тела. [8]

Рассмотрим теперь более подробно природу и физический смысл интегралов такого рода. [9]

Цель работы состоит в изучении основных явлений, демонстрирующих общие законы динамики системы точек и физический смысл интегралов движения . В общем случае задача нелинейна, и получить ее аналитическое решение не удается. В то же время проведение серии машинных экспериментов позволяет составить достаточно полное и наглядное представление об особенностях движения изучаемой механической системы. Специфика постановки машинного эксперимента проявляется, во-первых, в необходимости предварительной оценки характерного времени протекания процессов для правильной организации вывода результатов решения задачи. Эта оценка определяется заданием конкретных значений параметров системы и начальных условий и проводится студентом предварительно перед каждым вводом исходных данных. Во-вторых, некорректное задание параметров или начальных условий может приводить к аварийным прерываниям решения, не связанным с существом задачи и определяемым ее конкретной реализацией на машине. Студенты убеждаются также, что точность решения зависит как от выбора алгоритма, так и от исходных данных. Нетрудно проследить, например, как изменяют свое численное значение интегралы движения, если выбран сравнительно крупный шаг интегрирования дифференциальных уравнений. [10]

Вместе с тем, для многих приложе ний наиболее существенна именно / Атеория, что, в частности, объясняется физическим смыслом интеграла от квадрата модуля. [11]

При этом существование предела ( 4) для конечной функции, заданной на конечной области, может быть доказано математически, без ссылки на физический смысл интеграла . [12]

На рис. 1 а и 1, б изображены типичные примеры; на рис. 1, в показано, что две кривые могут быть зацеплены даже когда коэффициент зацепления равен нулю, а соленоид на рис. 1 г демонстрирует физический смысл интеграла Гаусса как работы по переносу единичного магнитного полюса по замкнутой кривой в магнитном поле, вызванном протеканием единичного электрического тока по другой кривой. [13]

Формула (2.27) представляет собой модифицированный принцип Гюйгенса — Френеля в нелинейной оптике. Физический смысл интеграла (2.27) довольно прост. [14]

Возможны дальнейшие обобщения интеграла Мора, когда прикладывается не единичный силовой фактор, а единичная система сил. Физический смысл интеграла Мора вытекает на того, что он представляет возможную работу единичной системы сил на перемещениях основной системы. [15]

Источник

Оцените статью