Формула интегралов мора способом верещагина

Содержание
  1. 2. Правило Мора-Верещагина (графический способ вычисления
  2. Перемножение эпюр по правилу, методу или способу Верещагина
  3. Верещагин и его метод, правило или способ
  4. Площадь и центр тяжести эпюр
  5. Перемножение простейших эпюр по Верещагину
  6. Прямоугольник на прямоугольник
  7. Прямоугольник на треугольник
  8. Треугольник на прямоугольник
  9. Параболический сегмент на прямоугольник
  10. Параболический сегмент на треугольник
  11. Расслоение эпюр на простые фигуры
  12. Прямоугольник и треугольник
  13. Два треугольника
  14. Два треугольника и параболический сегмент
  15. Треугольник, прямоугольник и параболический сегмент
  16. Пример определения перемещений: прогибов и углов поворотов по Верещагину
  17. Построение эпюры изгибающих моментов
  18. Построение единичных эпюр
  19. Перемножение участков эпюры по Верещагину
  20. Определение прогиба сечения С
  21. Определение угла поворота сечения С
  22. 2. Правило Мора-Верещагина (графический способ вычисления интеграла Мора)
  23. метод Верещагина

2. Правило Мора-Верещагина (графический способ вычисления

Кроме метода начальных параметров существует эффективный универсальный метод определения перемещений в балках, рамах и упругих конструкциях произвольной конфигурации – метод Мора. Упругое перемещение (либо прогиб , либо угол поворота сечения ) определяется по формуле:

где – изгибающий момент от заданной нагрузки; – изгибающий момент от единичной силы, приложенной в той точке, в которой определяется перемещение.

Упрощение операций интегрирования возможно для конструкций с прямолинейной осью постоянной жесткости и основано на том, что эпюры от единичных усилий на прямолинейных участках оказываются линейными. Рассматривая эту процедуру применительно к участку балки, преобразуем интеграл Мора с учетом этой особенности. На рис. 1.3 сверху показан участок балки с эпюрой общего вида, а внизу эпюра , представляющая собой линейную функцию. В результате несложного расчета (подробности смотри в учебнике) установлено, что интеграл произведения двух функций и численно равен площади эпюры , умноженной на величину момента, взятого с эпюры в сечении, соответствующем центру тяжести эпюры .

– обобщённое перемещение: либо прогиб , либо угол поворота . Если вычисляем прогиб, то в этой точке по направлению искомого прогиба к ненагруженной балке прикладываем единичную силу и строим эпюру . Если вычисляем угол поворота , то к ненагруженной балке в этой точке по направлению искомого углового перемещения прикладываем единичный момент и строим эпюру .

Если балка имеет несколько участков по длине, формула Верещагина будет иметь вид

где – площадь эпюры моментов от внешней нагрузки (грузовой эпюры); – ордината единичной эпюры под центром тяжести грузовой эпюры; – число участков по длине балки.

При пользовании этой формулой надо уметь вычислять площади и координаты центров тяжести основных фигур: прямоугольника, прямолинейного треугольника и криволинейного треугольника. Минимально необходимые справочные данные приведены в табл. 1.1. Процедуру графического вычисления называют «перемножением» эпюр.

Источник

Перемножение эпюр по правилу, методу или способу Верещагина

Привет! В этой статье будем учиться определять перемещения поперечных сечений при изгибе: прогибы и углы поворотов, по методу (способу, правилу) Верещагина. Причем это правило широко используется не только при определении перемещений, но и при раскрытии статической неопределимости систем по методу сил. Я расскажу, о сути этого метода, как перемножаются эпюры различной сложности и когда выгодно пользоваться этим методом.

Что нужно знать для успешного освоения материалов данного урока? Обязательно нужно уметь строить эпюры изгибающих моментов, т.к. в этой статье будем работать с данной эпюрой.

Читайте также:  Выглядит течка морских свинок

Верещагин и его метод, правило или способ

А.К. Верещагин в 1925г. предложил более простой способ решения (формулы) интеграла Мора. Он предложил вместо интегрирования двух функций перемножать эпюры: умножать площадь одной эпюры на ординату второй эпюры под центром тяжести первой. Этим способом можно пользоваться, когда одна из эпюр прямолинейна, вторая может быть как линейной, так и параболической. Кроме того, ордината берется прямолинейной эпюры. Когда эпюры обе прямолинейны, то тут совсем неважно, чью брать площадь, а чью ординату. Таким образом, эпюры по Верещагину перемножаются по следующей формуле:​

Проиллюстрировано перемножение эпюр по Верещагину: C — центр тяжести первой эпюры, ωс — площадь первой эпюры, Mc — ордината второй эпюры под центром тяжести первой.

Площадь и центр тяжести эпюр

При использовании метода Верещагина берется не сразу вся площадь эпюры, а частями, в пределах участков. Эпюра изгибающих моментов расслаивается на простейшие фигуры.

Любой самый сложный участок эпюры можно расслоить на три простейшие фигуры: прямоугольник, прямоугольный треугольник и параболический сегмент.

Поэтому именно с этими фигурами будем дальше работать. Напомню, как вычислить их площадь и где у них находится центр тяжести. Все формулы и размеры оформил в виде таблицы:

На рисунке показаны размеры простейших фигур, используемых при перемножении эпюр по правилу, методу или способу Верещагина, а также их площади и положение центра тяжести.

Перемножение простейших эпюр по Верещагину

В этом блоке статьи покажу простейшие случаи перемножения эпюр по Верещагину.

Прямоугольник на прямоугольник

Проиллюстрировано перемножение прямоугольника на прямоугольник по правилу Верещагина.

Прямоугольник на треугольник

Проиллюстрировано перемножение прямоугольника на треугольник по методу Верещагина.

Треугольник на прямоугольник

Проиллюстрировано перемножение треугольника на прямоугольник по способу Верещагина.

Параболический сегмент на прямоугольник

Проиллюстрировано перемножение параболического сегмента на прямоугольник по правилу Верещагина.

Параболический сегмент на треугольник

Проиллюстрировано перемножение параболического сегмента на прямоугольный треугольник по методу Верещагина.

Расслоение эпюр на простые фигуры

В этом блоке статьи покажу способы расслоения эпюр на простые фигуры, для дальнейшего их перемножения по правилу Верещагина.

Прямоугольник и треугольник

Разбивка участка эпюры на прямоугольных и треугольник, для перемножения его по правилу Верещагина.

Два треугольника

Расслоение участка эпюры на два прямоугольных треугольника, для перемножения его по способу Верещагина.

Два треугольника и параболический сегмент

Разбивка участка эпюры на два прямоугольных треугольника и параболический сегмент, для перемножения его по методу Верещагина.

Треугольник, прямоугольник и параболический сегмент

Разбивка участка эпюры на прямоугольный треугольник, прямоугольник и параболический сегмент, для перемножения его по правилу Верещагина.

Пример определения перемещений: прогибов и углов поворотов по Верещагину

Теперь предлагаю рассмотреть конкретный пример с расчетом перемещений поперечных сечений: их прогибов и углов поворотов. Возьмем стальную балку, которая загружена всевозможными типами нагрузок и определим прогиб сечения C, а также угол поворота сечения A.

Расчетная схема балки, для которой требуется определить перемещения сечений: прогибы и углы поворотов.

Построение эпюры изгибающих моментов

В первую очередь рассчитываем и строим эпюру изгибающих моментов:

Построение эпюры изгибающих моментов для рассчитываемой балки.

Построение единичных эпюр

Теперь для каждого искомого перемещения необходимо приложить единичную нагрузку в ту точку, где это перемещение определяется и построить единичные эпюры:

  • для прогибов прикладываются единичные силы.
  • для углов поворотов прикладываются единичные моменты.

Все прикладываемые нагрузки являются безразмерными величинами. Причем, направление этих нагрузок неважно! Расчет покажет верное направление перемещений.

Например, после расчета величина прогиба получилась положительной, это значит, что направление перемещения сечения совпадает с направлением ранее прикладываемой единичной силы. То же самое касается и углов поворотов.

Показаны построенные единичные эпюры от единичных нагрузок, приложенных в местах искомых перемещений.

Перемножение участков эпюры по Верещагину

После проведения всех подготовительных работ: построения эпюры изгибающих моментов, расслоения ее на элементарные фигуры и построения единичных эпюр от нагрузок, приложенных в местах и направлении искомых перемещений, можно переходить непосредственно к перемножению соответствующих эпюр.

Как уже было написано выше, линейные эпюры можно перемножать в любом порядке, то есть брать площадь любой эпюры: основной или единичной, и умножать на ординату другой. Но обычно, чтобы не путаться в расчетах, площади берут основной эпюры изгибающих моментов, в этом уроке будем придерживаться этого же правила.

Читайте также:  Строение иглы морского ежа

Определение прогиба сечения С

Перемножаем соответствующие эпюры слева направо и вычисляем прогиб сечения C по методу Мора — Верещагина:

\[ < V >_< C >=\frac < 1 >< E< I >_ < x >> (\frac < 1 > < 2 >\cdot 6\cdot 3\cdot \frac < 2 > < 3 >\cdot 2+\frac < 1 > < 2 >\cdot 6\cdot 2\cdot \frac < 2 > < 3 >\cdot 2)=\frac < 20кН< м >^ < 3 >>< E< I >_ < x >> \]

Представим, что рассчитываемая балка имеет поперечное сечение в виде двутавра №24 по ГОСТ 8239-89, тогда прогиб балки будет равен:

Определение угла поворота сечения С

Перемножаем соответствующие эпюры слева направо и вычисляем угол поворота сечения C по правилу Мора — Верещагина:

Для закрепления пройденного материала рекомендую изучить примеры, где рассмотрены различные случаи расслоения и перемножения эпюр.

Источник

2. Правило Мора-Верещагина (графический способ вычисления интеграла Мора)

Кроме метода начальных параметров существует эффективный универсальный метод определения перемещений в балках, рамах и упругих конструкциях произвольной конфигурации – метод Мора. Упругое перемещение (либо прогиб, либо угол поворота сечения) определяется по формуле:

, (1.3)

где – изгибающий момент от заданной нагрузки;– изгибающий момент от единичной силы, приложенной в той точке, в которой определяется перемещение.

Упрощение операций интегрирования возможно для конструкций с прямолинейной осью постоянной жесткости и основано на том, что эпюры от единичных усилий на прямолинейных участках оказываются линейными. Рассматривая эту процедуру применительно к участку балки, преобразуем интеграл Мора с учетом этой особенности. На рис. 1.3 сверху показан участок балки с эпюрой общего вида, а внизу эпюра , представляющая собой линейную функцию. В результате несложного расчета (подробности смотри в учебнике) установлено, что интеграл произведения двух функций и численно равен площади эпюры , умноженной на величину момента, взятого с эпюры в сечении, соответствующем центру тяжести эпюры .

. (1.4)

Если балка имеет несколько участков по длине, формула Верещагина будет иметь вид

, (1.5)

где – площадь эпюры моментов от внешней нагрузки (грузовой эпюры); – ордината единичной эпюры под центром тяжести грузовой эпюры; – число участков по длине балки.

При пользовании этой формулой надо уметь вычислять площади и координаты центров тяжести основных фигур: прямоугольника, прямолинейного треугольника и криволинейного треугольника. Минимально необходимые справочные данные приведены в табл. 1.1. Процедуру графического вычисления называют «перемножением» эпюр.

Эпюры и

эпюры ,

тяжести

Эпюры и

эпюры ,

тяжести

Примечания: 1. Все кривые в табл. 1.1 – квадратные параболы. 2. При «перемножении» эпюр одного знака их произведение положительно. 3. При «перемножении» эпюр разных знаков их произведение отрицательно.

В случае, если эпюра тоже линейная, операция перемножения обладает свойством коммутативности: безразлично, умножается ли площадь грузовой эпюры на ординату единичной или площадь единичной на ординату грузовой.

Рассмотрим на примере расчетной схемы, показанной на рис. 1.4, порядок решения задач при определении перемещения с помощью правила Мора-Верещагина. Определим прогиб в точке .

Чтобы построить эпюры и ,можно не определять опорные реакции: достаточно сосчитать момент на опореот нагрузки на консоли, построить эпюру на консоли, а затем соединить прямой линией значениеM на опореB с нулем на опореA.

Читайте также:  Самые быстрые обитатели моря

В соответствии с формулой (1.5)

.

Источник

метод Верещагина

Определить перемещение точки К балки (см. рис.) при помощи интеграла Мора.

1) Составляем уравнение изгибающего момента от внешней силы MF.

2) Прикладываем в точке К единичную силу F = 1.

3) Записываем уравнение изгибающего момента от единичной силы .

Определить перемещение точки К балки по способу Верещагина.

2) Прикладываем в точке К единичную силу.

; ;

Определить углы поворота на опорах А и В для заданной балки (см. рис.).

Строим эпюры от заданной нагрузки и от единичных моментов, приложенных в сечениях А и В (см. рис.). Искомые перемещения определяем с помощью интегралов Мора

,

, которые вычисляем по правилу Верещагина.

C1 = 2/3, C2 = 1/3,

а затем и углы поворота на опорах А и В

Определить угол поворота сечения С для заданной балки (см. рис.).

Определяем опорные реакции RA=RB,

, , RA = RB = qa.

Строим эпюры изгибающего момента от заданной нагрузки и от единичного момента, приложенного в сечении С, где ищется угол поворота. Интеграл Мора вычисляем по правилу Верещагина. Находим параметры эпюр

C2 = —C1 = -1/4,

а по ним и искомое перемещение

.

Определить прогиб в сечении С для заданной балки (см. рис.).

1. Построение эпюр изгибающих моментов.

Эпюра MF (рис. б)

ВЕ: , ,

, RB + RE = F, RE = 0;

АВ: , RА = RВ = F; , .

Вычисляем моменты в характерных точках , MB = 0, MC = Fa и строим эпюру изгибающего момента от заданной нагрузки.

Эпюра (рис. в).

В сечении С, где ищется прогиб, прикладываем единичную силу и строим от нее эпюру изгибающего момента, вычисляя сначала опорные реакции ВЕ, , = 2/3; , , = 1/3, а затем моменты в характерных точках , , .

2. Определение искомого прогиба. Воспользуемся правилом Верещагина и вычислим предварительно параметры эпюр и :

,

.

Определить прогиб в сечении С для заданной балки (см. рис.).

Строим эпюры изгибающих моментов от заданной нагрузки и от единичной силы, приложенной в точке С. Пользуясь правилом Верещагина, вычисляем параметры эпюр ,

.

Определить прогиб в сечении С для заданной балки (см. рис.).

1. Построение эпюр изгибающих моментов.

, , RA = 2qa,

, RA + RD = 3qa, RD = qa.

Строим эпюры изгибающих моментов от заданной нагрузки и от единичной силы, приложенной в точке С.

2. Определение перемещений. Для вычисления интеграла Мора воспользуемся формулой Симпсона, последовательно применяя ее к каждому из трех участков, на которые разбивается балка.

Участок АВ:

Участок ВС:

Участок СD:

.

Определить прогиб сечения А и угол поворота сечения Е для заданной балки (рис. а).

1. Построение эпюр изгибающих моментов.

Эпюра МF (рис. в). Определив опорные реакции

, , RB = 19qa/8,

, RD = 13qa/8, строим эпюры поперечной силы Q и изгибающего момента МF от заданной нагрузки.

Эпюра (рис. д). В сечении А, где ищется прогиб, прикладываем единичную силу и строим от нее эпюру изгибающего момента.

Эпюра (рис. е). Эта эпюра строится от единичного момента, приложенного в сечении Е, где ищется угол поворота.

2. Определение перемещений. Прогиб сечения А находим, пользуясь правилом Верещагина. Эпюру МF на участках ВС и CD разбиваем на простые части (рис. г). Необходимые вычисления представляем в виде таблицы.

Источник

Оцените статью