- Если открыть одновременно две трубы, то бассейн будет наполнен водой за 2 часа 24 минуты, если с…
- Если открыть одновременно две трубы, то бассейн будет наполнен водой за 2 часа 24 минуты, если сначала через первую трубу наполнить
- Если открыть одновременно две трубы, то бассейн будет наполнен за 8 часов. Если сначала первая труба наполнит половину
- Ответ или решение 1
Если открыть одновременно две трубы, то бассейн будет наполнен водой за 2 часа 24 минуты, если с…
Если открыть одновременно две трубы, то бассейн будет наполнен водой за 2 часа 24 минуты, если сначала через первую трубу наполнить
бассейна, а потом через вторую трубу оставшуюся часть, то весь бассейн будет наполнен за 6 часов. За сколько часов можно наполнить бассейн через каждую трубу отдельно?
Решение:
Обозначим объём бассейна за 1(единицу), а
— время наполнения первой трубой за (х)
— время наполнения второй трубой за (у)
Тогда:
— производительность наполнения первой трубой 1/х
— производительность наполнения второй трубой 1/у
Время наполнения бассейна обеими трубами составляет 2 24/60=2,4 час или:
1 : (1/х+1/у)=2,4
1 : (у+х)/ху=2,4
ху/(у+х)=2,4
ху=(у+х)*2,4
ху=2,4у+2,4х (1)
Время наполнения 1/3 бассейна составляет:
1/3 : 1/х=х/3
Время наполнения 2/3 бассейна составляет:
2/3 : 1/у=2у/3
Время наполнения таким образом составляет 6 часов или:
х/3+2у/3=6
(х+у)/3=6
х+у=3*6
х+у=18 (2)
Решим получившуюся систему уравнений (1) и (2):
ху=2,4у+2,4х
х+у=18
Из второго уравнения найдём значение (х) и подставим его в первое уравнение:
х=18-у
(18-у)*у=2,4у+2,4*(18-у)
18у-2у²=2,4у+43,2-4,8у
2у²-20,4+43,2=0 сократим на 2, получим:
у²-10,2+21,6=0
у1,2=(10,2+-D)/2*1
D=√(10²-4*1*21,6)=√( 104,04-86,4)=√17,64=4,2
у1,2=(10,2+-4,2)/2
у1=(10,2+4,2/2
у1=14,4/2
у1=7,2 — не соответствует условию задачи
у2=(10,2-4,2)/2
у2=6/2
у2=3 (час) — время наполнения бассейна второй трубой)
время наполнения бассейна первой трубой составляет:
18-2*3=12 час
Ответ: Время наполнения бассейна первой трубой-12 час;
Время наполнения бассейна второй трубой — 3 час
Источник
Если открыть одновременно две трубы, то бассейн будет наполнен водой за 2 часа 24 минуты, если сначала через первую трубу наполнить
бассейна, а потом через вторую трубу оставшуюся часть, то весь бассейн будет наполнен за 6 часов. За сколько часов можно наполнить бассейн через каждую трубу отдельно?
Решение:
Обозначим объём бассейна за 1(единицу), а
— время наполнения первой трубой за (х)
— время наполнения второй трубой за (у)
Тогда:
— производительность наполнения первой трубой 1/х
— производительность наполнения второй трубой 1/у
Время наполнения бассейна обеими трубами составляет 2 24/60=2,4 час или:
1 : (1/х+1/у)=2,4
1 : (у+х)/ху=2,4
ху/(у+х)=2,4
ху=(у+х)*2,4
ху=2,4у+2,4х (1)
Время наполнения 1/3 бассейна составляет:
1/3 : 1/х=х/3
Время наполнения 2/3 бассейна составляет:
2/3 : 1/у=2у/3
Время наполнения таким образом составляет 6 часов или:
х/3+2у/3=6
(х+у)/3=6
х+у=3*6
х+у=18 (2)
Решим получившуюся систему уравнений (1) и (2):
ху=2,4у+2,4х
х+у=18
Из второго уравнения найдём значение (х) и подставим его в первое уравнение:
х=18-у
(18-у)*у=2,4у+2,4*(18-у)
18у-2у²=2,4у+43,2-4,8у
2у²-20,4+43,2=0 сократим на 2, получим:
у²-10,2+21,6=0
у1,2=(10,2+-D)/2*1
D=√(10²-4*1*21,6)=√( 104,04-86,4)=√17,64=4,2
у1,2=(10,2+-4,2)/2
у1=(10,2+4,2/2
у1=14,4/2
у1=7,2 — не соответствует условию задачи
у2=(10,2-4,2)/2
у2=6/2
у2=3 (час) — время наполнения бассейна второй трубой)
время наполнения бассейна первой трубой составляет:
18-2*3=12 час
Ответ: Время наполнения бассейна первой трубой-12 час;
Время наполнения бассейна второй трубой — 3 час
Источник
Если открыть одновременно две трубы, то бассейн будет наполнен за 8 часов. Если сначала первая труба наполнит половину
Ответ или решение 1
Обозначим через х ту часть бассейна, которая наполняется 1-й трубой за 1 час, а через у ту часть бассейна, которая наполняется 2-й трубой за 1 час.
Тогда первая труба сможет наполнить весь бассейн за 1/х часов, а вторая труба за 1/у часов.
В условии задачи сказано, что если открыты обе трубы, то бассейн наполнится за 8 часов, следовательно, имеет место следующее соотношение:
Также известно, что если сначала первая труба наполнит половину бассейна, а затем другая труба — вторую его половину, то весь бассейн будет наполнен за 18 часов, следовательно, имеет место следующее соотношение:
Решаем полученную систему уравнений.
Подставляя во второе уравнение значение у = 1/8 — х из первого уравнения, получаем:
1/(2х) + 1/(2 * (1/8 — х)) = 18;
1/х + 1 / (1/8 — х) = 36;
1/8 — х + х = 36х * (1/8 — х);
288х^2 — 36x + 1 = 0;
x = (18 ± √(324 — 288)) / 288 = (18 ± √36) / 288 = (18 ± 6) / 288;
x1 = (18 + 6) / 288 = 24/288 = 1/12;
x2 = (18 — 6) / 288 = 12/288 = 1/24.
у1 = 1/8 — х1 = 1/8 — 1/12 = 1/24;
у2 = 1/8 — х2 = 1/8 — 1/24 = 1/12.
Ответ: одна труба наполнит бассейн за 12 часов, другая труба наполнит бассейн за 24 часа.
Источник