Динамика развития пожаров на газовых, газонефтяных и нефтяных фонтанах
Пожары фонтанов условно разделяют на три группы: газовые, газонефтяные и нефтяные. Газовыми считаются фонтаны с содержанием горючего газа не менее 95% по массе, газонефтяными — газа более 50% и нефти менее 50% по массе, а нефтяными — фонтаны с дебитом нефти более 50% по массе. Кроме того, газовые и газонефтяные фонтаны условно подразделяются по мощности (дебиту) на слабые — с дебитом газа до 2млн.м 3 /сутки, средние — от 2 до 5 млн.м 3 /сутки и мощные — свыше 5 млн.м 3 /сутки.
При авариях на скважинах истечение газа из фонтанной арматуры происходит при высоких перепадах давления, значительно превышающих критические, т.е. на срезе трубы устанавливается скорость истечения, равная скорости звука. Для метана скорость звука равна приблизительно 400 м/с.
Горение газового фонтана является диффузионным. В окружающую атмосферу вытекает свежий газ, а горение происходит в результате взаимной диффузии газа и кислорода воздуха.
Горение газовых фонтанов устойчивое, которое может длиться неделями и даже месяцами и не зависит от метеорологических условий- ветра, дождя и т.п. Для ликвидации такого пожара необходимо огромное количество сил и средств.
Поскольку в реальных условиях истечение газа из фонтанной арматуры происходит в основном со скоростями в несколько десятков и даже сотен метров в секунду (при Rе (число Рейнольдса) > 2300), то характер изменения поля скоростей и концентраций газа вдоль струи и в поперечных сечениях (отстоящих на различных расстояниях от места истечения) будут определяться основными закономерностями турбулентной газовой струи [4,10,35].
Рассматривая факелы газонефтяных фонтанов, можно пользоваться (с некоторыми поправками) основными закономерностями турбулентных газовых струй, так как при соотношении массы жидкой фазы (нефти) к массе газа около единицы отношение объемов газа и нефти будет около тысячи. По мере удаления от среза трубы (за счет массообмена струи с окружающим воздухом) это соотношение будет увеличиваться в десятки раз. Скорость движения капелек нефти в струе будет приблизительно равна скорости движения газовой фазы. Поэтому такую двухфазную струю можно рассматривать как свободную затопленную турбулентную струю.
Одним из важных параметров газового факела является его длина (высота). Под высотой факела горения понимается наблюдаемая визуально или «фотографическая» длина факела, а не «химическая».
Проведенными исследованиями установлена экспериментальная зависимость между высотой факела пламени и дебитом газовой скважины. Для практических расчетов с точностью + 5% может быть использована формула:
(3. 1.)
где — дебит фонтана млн. м 3 /сутки
Зная дебит фонтана, можно предположить, что высота факела фонтана составит:
.
Исследованиями установлено, что с увеличением расхода газа высота факела пламени растет медленно, причем на нее не оказывает существенного влияния диаметр насадка. Так, при расходе газа 2,2 млн.м³/сутки высота факела для устья фонтана диаметром 150 и 250 мм, составляет 33 м.
Высота пламени у газонефтяных фонтанов несколько больше, чем у газовых. Нефтяные фонтаны с большим дебитом нефти и незначительным содержанием газа имеют небольшую высоту факела пламени, примерно 20-З0 м. Пламя газового фонтана имеет светло-желтую окраску. При пожарах газонефтяных фонтанов вся нефть, как правило, сгорает в факеле пожара, пламя имеет оранжевый цвет, иногда горение сопровождается клубами черного дыма. При пожарах нефтяных фонтанов только незначительная часть нефти успевает испариться и сгореть в воздухе, а большая ее часть выпадает на землю, разливается вокруг устья скважины и продолжает гореть. Нефтяной фонтан горит темным оранжевым пламенем с большим выделением черного дыма.
Одним из факторов, препятствующих ликвидации пожаров газовых фонтанов, является высокая интенсивность теплового излучения факела пламени. Поэтому при тушении газового фонтана большие расходы воды необходимо предусматривать на орошение поверхности земли вокруг скважины в радиусе 10-15 м для снижения температуры в этой зоне, а также на защиту от теплового излучения личного состава и техники, принимающих участие в ликвидации пожара.
Интенсивность излучения компактного вертикального факела газового фонтана в безветренную погоду может быть рассчитана по формуле
(3. 3.)
где f— коэффициент излучения факела пламени, учитывающий долю тепла, рассеивающегося излучением в окружающее пространство; — количество тепла, выделяемого факелом пламени; R— расстояние от центра пламени до рассматриваемой точки на поверхности земли.
Значение f принимается: для метана — 0,2, пропана — 0,33, других углеводородов — 0,4.
Теплота пожара определяется по формуле:
(3. 4)
Где — низшая теплота сгорания газа, Дж/м 3 ;
— расход (дебит) газового фонтана, м 3 /ч; β- коэффициент неполноты сгорания.
Зная величину интенсивности теплового излучения, которую выдерживает личный состав , можно рассчитать предельное расстояние (рис. 3.1.) от центра факела пламени по формуле:
(3. 5)
На рис. 3.2. показана зависимость интенсивности теплового излучения от времени теплового воздействия при максимальных болевых ощущениях. Из графика видно, что с увеличением тепловых нагрузок время резко сокращается. При интенсивности излучения (3-4)· Дж/(м²·ч) время реакции человека (
5 с) оказывается больше, чем время достижения болевых ощущений, что может привести к сильным ожогам людей, находящихся вблизи устья фонтана при неожиданной его вспышке. При расчетах принимают, что тепловое излучение с интенсивностью в 5,6· Дж/(м²·ч) является безопасным и личный состав может выдерживать такие тепловые нагрузки без специальной защиты в течение неограниченного времени.
Безопасное расстояние (рис. 3.1.), на котором могут работать участники тушения пожара, рассчитывается по формуле:
(3. 6.)
Рис. 3. 1. Принципиальная схема расчета безопасного расстояния до горящего факела газового фонтана.
Рис. 3. 2. Зависимость интенсивности теплоизлучения от времени воздействия при максимальных болевых ощущениях
При сильном ветре пламя факела газового фонтана отклоняется от вертикального положения (рис. 3.3.), поэтому проекция зоны теплового воздействия будет иметь форму эллипса. В этом случае безопасное расстояние от устья скважины в противоположном направлении ветра увеличивается и может быть рассчитано по формуле:
(3.7.)
Рис. 3. 3. Принципиальная схема расчета безопасного расстояния для наклонного факела пламени
Для двух горелок различных диаметров при одинаковой скорости смеси в них, считая нормальную скорость константой, тепловые напряжения объема факела обратно пропорциональны радиусу горелки:
(3. 8.)
Это объясняется тем, что горение смеси происходит по поверхности факела. С уменьшением радиуса горелки увеличивается поверхность пламени, приходящаяся на единицу объема факела, что приводит к увеличению теплового напряжения. Такой вид горения наблюдается и на реальных пожарах при горении распыленных газовых фонтанов (рис. 3.4.), например, когда на устье скважины находится буровое оборудование или скважина оборудована фонтанной арматурой (елкой). Фронт пламени имеет развитую поверхность горения, что уменьшает инертный объем факела и увеличивает тепловое напряжение факела горения. При этом факел пламени имеет незначительную длину (высоту) и большой поперечный размер (ширину, диаметр). При встрече струи с фонтанной арматурой за плохо обтекаемыми телами образуется разрежение, вызывающее циркуляцию мощного потока высоконагретых продуктов горения. Факел горения принимает вид полого расходящегося конуса, в котором зажигание осуществляется как изнутри, так и по наружной поверхности. Тушение мощных распыленных фонтанов значительно труднее, чем компактных. Из-за сильно развитой поверхности горения, горение является более устойчивым. На практике распыленный фонтан, как правило, приводят к компактному и только затем приступают к его тушению. Кроме того, встречаются комбинированные фонтаны с компактным факелом сверху (или наклоненном под углом к горизонту) и распыленными у устья (на арматуре), а также групповые (кустовые) фонтаны с одновременным горением двух и более скважин.
Рис. 3. 4. Виды факелов пламени распыленных газовых фонтанов
Источник
Расчёт параметров газового фонтана
Введение
Адиабатический пожар газовый фонтан
Увеличивающаяся с каждым годом добыча нефти и газа, ежегодный объем которой в настоящее время в стране составляет сотни млрд. м 3 , повышает вероятность аварийных ситуаций, которые могут сопровождаться крупными пожарами, большими материальными потерями, ухудшением экологической обстановки в зоне пожара и прилегающих районах, а нередко и человеческими жертвами. Это обусловливается отказом механизмов, нарушением технологии добычи, природными катастрофами и приводит к серьёзным авариям.
Пожары на открыто фонтанирующих газонефтяных скважинах являются одними из наиболее сложных видов промышленных аварий.
Некоторое представление о пожаре на фонтанирующей скважине можно получить по следующим данным: дебит мощных газовых фонтанов может достигать 10 — 20 миллионов кубометров в сутки, высота горящего факела — 80 — 100 м, а интенсивность тепловыделения в факеле — несколько миллионов киловатт.
Целью курсовой работы «Теоретический расчёт основных параметров горения и тушения пожаров газовых фонтанов» является выработка навыков использования теоретических знаний, полученных при изучении дисциплины «Физико-химические основы развития и тушения пожаров» при проведении расчётов параметров пожаров и расхода огнетушащих веществ.
В результате выполнения курсовой работы студент должен знать и уметь оценивать расчётными методами:
режим истечения газового фонтана;
параметры пожара газового фонтана;
адиабатическую и действительную температуры пламени;
интенсивность облучённости от факела пламени в зависимости от расстояния до устья скважины;
Расчётная часть
Исходные данные
Адиабатический пожар газовый фонтан
Компактный газовый фонтан состава (см. ниже), истекающий через устье диаметром dy, имеет высоту факела пламени Hф. Химический недожог ηх в зоне горения составляет от низшей теплоты сгорания.
Содержание компонентов, % (об):
Параметры газового фонтана:
Диаметр устьевого оборудования (dy) — 250 мм
Высота факела пламени — 45 м
Химический недожог (в долях от низшей теплоты сгорания) — 0,15
Дебит газового фонтана;
Адиабатическую температуру горения Ta, ºС;
Действительную температуру горения Тг, ºС;
Изменение интенсивности лучистого теплового потока в зависимости от расстояния до устья скважины qл. Определить безопасное расстояние Lб;
Адиабатическую температуру потухания Тпот, ºС;
Минимальный секундный расход воды Vmin, л/с;
Удельный расход воды на тушение фонтана Vуд, л/м 3 ;
Коэффициент использования воды kв.
Расчёт параметров газового фонтана
1. Дебит газового фонтана ( , млн. м 3 /сутки) может быть рассчитан из высоты факела пламени по формуле (4):
= 0,0025×
=0,0025×45 2 = 5,06 млн. м 3 /сутки
Секундный расход газа составит Vг = 5,06∙10 6 / (24×60×60) = 58,59 м 3 /с.
Режим истечения газовой струи может быть определён сравнением эффективной скорости истечения (Vэ) со скоростью звука (Vо)
Эффективная скорость истечения (Vэ) газовой струи может быть определена по уравнению:
— секундный расход газа, м 3 /с;- диаметр устья скважины, м.
Скорость звука в метане (V0) составляет 430 м/с
. Теплота пожара рассчитывается по формуле:
низшая теплота горения газовой смеси:
где Qнi — низшая теплота сгорания i-го горючего компонента, кДж/м 3 ;
φгi — содержание i-го горючего компонента в смеси, % об.
Низшая теплота сгорания отдельныхкомпонентов рассчитывается, выбирается в таблице 2 приложения.
Теплота пожара — тепловыделение в зоне горения в единицу времени (кВт)
q = Qн (1-ηх) ∙ V= 38263,2(1-0,15)∙58,59 = 1905688,7 кВт
. Мощность теплового излучения факела пламени
Для определения теплоотдачи излучением пламени (ηл) определим среднюю молекулярную массу фонтанирующей газовой смеси
Молекулярную массуфонтанирующего газа ( ), состоящего из нескольких компонентов, можно определить по формуле:
,
где −молекулярная масса i-гoгорючего компонента газового фонтана;
− доля i-гo горючего компонента.
Молекулярная масса горючего газа, содержащего метан и сероуглерод, будет равна:
Коэффициент теплопотерь излучением от пламени газового фонтана может бытьопределён в соответствии со следующей формулой [1]:
.
,
Коэффициент общих теплопотерь будет равен:
,
где — общие теплопотери при горении газового фонтана, представляющие собой долюот низшей теплоты сгорания
;
— химический недожог (0,15);
Мощность излучения от расстояния до устья скважины (L):
Для установления величины облучённости окружающего пространства факелом пламени в зависимости от расстояния до скважины в формуле (31) необходимо задаваться значениями L, принимая их равными 5, 10,20, 40, 60, 80, 100, 120, 150 и 200 м. В формулу (31) подставляются также высота факела пламени Нф= 45 м, секундный расход газа VГ = 58,59 м 3 /с и коэффициент теплопотерь излучением hл = 0,364.
В качестве примера проведём расчёт облучённости (qл) на расстоянии L, м:
кВт/м 2
Рассчитанные значения облучённости сведём в таблице 3.
Таблица 1 — Величина облучённости от факела газового фонтана в зависимости от расстояния до устья скважины
L,м | 5 | 10 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
qл, кВт/м 2 | 61,12 | 53,56 | 35,83 | 15,42 | 7,91 | 4,70 | 3,09 | 2,18 | 1,61 | 1,24 |
По результатам расчёта, представленным в таблице3, строится график зависимости мощности излучения от расстояния до устья скважины, по которому определяются границы зон I — IV.
ЗависимостьЕ = f(L) в графической форме представлена на рис. 1.
Рисунок 1 — Зависимость мощности теплового потока от расстояния до устья скважины
При расчёте расстояния L принимается, что источником излучения пламени фонтана является точка, расположенная в его геометрическом центре, — т.е. на высоте Нф/2 от устья скважины
Рисунок 2 — Схема для расчёта плотности теплового потокаТогда плотность потока излучения Eчерез сферу радиусом R равна
откуда расстояние R, на котором плотность лучистого теплового потока равна заданному значению qзад, определяется выражением
Очевидно, что соответствующее расстояние от скважины на уровне земли L равно:
Дляqзад = 4,2 кВт/м 2 :
Для qзад = 14 кВт/м 2 :
Мощность теплового потока, кВт/м 2 | Граница зоны до устья скважины, м |
4,2 | 85,00 |
14,0 | 42,58 |
За адиабатическую температуру потухания как предельный параметр процесса горения может быть принята адиабатическая температура горения на нижнем концентрационном пределе распространения пламени (НКПР).
Определяется НКПР для индивидуальных компонентов смеси (СН4 и CS2) по аппроксимационной формуле или выбирается из таблицы приложения:
для метана φн = 5,28 %,
для сероуглерода φн = 1,0 %.
,
где ji — концентрация i-го горючего газа в смеси;
jiн — значение НКПР i-го компонента.
Для нахождения коэффициента избытка воздуха на НКПР для данной смеси газов рассчитаем теоретический объём воздуха:
,
где — сумма произведений стехиометрических коэффициентов реакций горения каждого компонента горючей смеси (
) на процентное содержание этого компонента (ji) в смеси;
— процентное содержание кислорода в газовой смеси.
Отсюда
Тогда DVв =V теор в(α-1) = 10,19 (2,04 − 1) = 10,6м 3 /м 3
или
Для расчёта адиабатической температуры потухания методом последовательных приближений — из уравнения химической реакции горения определяется объём и состав продуктов горения.
Определим объём (V) и число молей (ν) продуктов горения, образовавшихся при сгорании исходной смеси, содержащей 90об. % СН4, 8 об. % С2Н6, 2 об. %СS2, используя приведённые выше химические уравнения реакций их горения.
Суммарный объём продуктов горения с учётом избытка воздуха составит:
V*пг = Vпг+DVв=(1,08+ 2,04 + 0,04 + 8,05)+ 10,61= 10,79+10,61= 21,4 м 3 /м 3
Рассчитывается среднее теплосодержание продуктов горения
по таблице приложения определяется первая приближённая температура, ориентируясь на азот, количество которого в продуктах горения наибольшее
Рассчитывается теплосодержание притемпературеT1 = 1200 ºC
1 = 2718,5·1,08 + 2133,9·2,04 + 2735,2·0,04 + 1705,3·8,05 + 1720,4·10,6 = 39379,7 кДж/м 3 ;
Рассчитывается теплосодержание при температуре T2 = 1100 ºC
2 = 2460,4·1,08 + 1926,5·2,04 + 2488,8·0,04 + 1551,1·8,05 + 1554,9·10,6 = 35670,7 кДж/м 3
Методом линейной интерполяции определяем адиабатическую температуру потухания:
Расчёт теплосодержания теоретического объёма продуктов горения при температуре потухания проводится методом последовательных приближений с линейной интерполяцией, для чего используются данные табл. 2 приложения
Результаты сводятся таблицу 3.
Таблица 3 — Теплосодержание продуктов горения при температуре потухания
№ п/п | Продукт горения (теоретический) | Теплосодержание, кДж/м 3 |
1 | Диоксид углерода | 2640,8 |
2 | Пары воды | 2071,5 |
3 | Диоксид серы | 2661,0 |
4 | Азот | 1658,9 |
После интегрирования уравнения получим выражение для расчёта адиабатической температуры горения:
Для расчётов воспользуемся следующими средними значениями теплоёмкостей для температурного диапазона 298−2000 K:
=53,14;
=42,34;
=32,76;
= 52,57 Дж/моль . K
Подставив приведённые значения теплоёмкостей и числа молей продуктов сгорания в формулу (25), получим:
Действительная температура горения всегда ниже адиабатической, так как часть тепла теряется с излучением. При расчёте действительной температуры горения учитываются потери тепла в результате химического недожога в зоне горения, когда образуются продукты неполного сгорания (СО, С,
и др.) и потери тепла за счёт излучения факела пламени.
Действительная температура горения газового фонтана будет равна:
.
Теплосодержание продуктов горения при температуре потухания
пг = 2640,8∙1,08+2071,5∙2,04+2661,0∙0,04+1658,9∙8,05 = 20532,4 кДж/м 3
Количество тепла, которое должно быть отведено от зоны горения огнетушащим средством
Отвод тепла от зоны пламени происходит в результате нагрева воды от начальной температуры до температуры потухания. Охлаждающий эффект воды определяется
Источник