Бассейн наполняется через первую трубу за 5 часов быстрее чем через вторую бассейн

Содержание
  1. Через первую трубу можно наполнить бассейн на 5 часов быстрее, чем через вторую, а третья труба наполняет бассейн на 4 ч быстрее, чем первая?
  2. В бассейн проведены три трубы?
  3. Первая труба наполняет бассейн за 2 часа?
  4. К бассейну подведены три трубы?
  5. Две трубы наполняют бассейн за 4 ч, а первая труба наполняет бассейн за 6 ч?
  6. В бассейн проведены четыре трубы?
  7. Через первую трубу бассейн наполняется на 6 часов дольше, чем через вторую и на 8 часов дольше чем через третью?
  8. Через первую трубу можно наполнить бассейн на 5 ч быстрее, чем через вторую, а третья труба наполняет бассейн на 4 ч быстрее, Чем первая?
  9. В бассейн проведены три трубы?
  10. Бассейн наполняется двумя трубами за 6 2 / 3 часа , за сколько часов наполнит бассейн одна вторая труба, если первая труба наполняет его на 3 часа быстрее второй?
  11. Бассейн наполняется двумя трубами за 12ч ?
  12. Бассейн наполняется через первую трубу за 5 часов быстрее чем через вторую бассейн
  13. Бассейн наполняется через первую трубу за 5 часов быстрее чем через вторую бассейн

Через первую трубу можно наполнить бассейн на 5 часов быстрее, чем через вторую, а третья труба наполняет бассейн на 4 ч быстрее, чем первая?

Алгебра | 5 — 9 классы

Через первую трубу можно наполнить бассейн на 5 часов быстрее, чем через вторую, а третья труба наполняет бассейн на 4 ч быстрее, чем первая.

За какое время можно наполнить бассейн через третью трубу, если это время равно времени, за которое наполняют бассейн первая и вторая трубы вместе?

Берём за х время, за которое наполняет бассейнпервая труба, тогда

х + 5 — время, за которое наполняет бассейнвторая труба

х — 4 — время, за которое наполняет бассейнтретья труба

К. время наполнения третьей трубы = времени наполнения первой и второй вместе взятых, то составляем уравнение :

х = 9 : 2 = 4, 5 ч — время, за которое наполняет бассейнпервая труба

4, 5 + 5 = 9, 5ч — время, за которое наполняет бассейнвторая труба

4, 5 — 4 = 0, 5 ч — время, за которое наполняет бассейнтретья труба

Ответ : за0, 5 часа (30 минут)можно наполнить бассейн через третью трубу.

В бассейн проведены три трубы?

В бассейн проведены три трубы.

Первая наполняет за 5 часов, вторая за 15 ч , а третья — за 3 часа.

Читайте также:  Надувной маленький бассейн intex

За какое время наполнится бассейн, если открыть все трубы.

Первая труба наполняет бассейн за 2 часа?

Первая труба наполняет бассейн за 2 часа.

Вторая — втрое быстрее.

За какое время наполняет бассейн обе трубы?

К бассейну подведены три трубы?

К бассейну подведены три трубы.

Первая и вторая трубы вместе наполняют бассейн за 12 часов, а первая и третья трубы вместе — за 15 ч, а вторая и третья трубы вместе — за 20 ч.

За сколько часов наполнят бассейн все три трубы вместе?

Две трубы наполняют бассейн за 4 ч, а первая труба наполняет бассейн за 6 ч?

Две трубы наполняют бассейн за 4 ч, а первая труба наполняет бассейн за 6 ч.

За сколько часов наполнит бассейн вторая труба?

В бассейн проведены четыре трубы?

В бассейн проведены четыре трубы.

Через первые две трубы вода втекает в бассейн, через две другие вытекает.

Если работают все четыре трубы одновременно, то бассейн наполняется за 2, 5 часа.

Если работают первая, вторая и третья трубы, то бассейн наполняется за 1, 5 часа.

Если работают первая, третья и четвертая трубы, то бассейн наполняется за 15 часов.

Найти время за которое наполнит бассейн только первая и третья трубы.

Через первую трубу бассейн наполняется на 6 часов дольше, чем через вторую и на 8 часов дольше чем через третью?

Через первую трубу бассейн наполняется на 6 часов дольше, чем через вторую и на 8 часов дольше чем через третью.

Если одновременно открыть первую и вторую, то бассейн наполнится за то же самое время, что при открытой только третьей трубе.

За сколько часов бассейн наполняется через третью трубу.

Через первую трубу можно наполнить бассейн на 5 ч быстрее, чем через вторую, а третья труба наполняет бассейн на 4 ч быстрее, Чем первая?

Через первую трубу можно наполнить бассейн на 5 ч быстрее, чем через вторую, а третья труба наполняет бассейн на 4 ч быстрее, Чем первая.

За какое время можно наполнить бассейн через третью трубу если это время равно времени, за которое наполняют бассейн первая и вторая трубы вместе?

В бассейн проведены три трубы?

В бассейн проведены три трубы.

Читайте также:  Организации по изготовлению бассейнов

Первая труба наполняет бассейн за 5 часов , вторая за 15 часов , а третья за 3 часа .

За какое время наполниться бассейн , если открыть три трубы ?

Бассейн наполняется двумя трубами за 6 2 / 3 часа , за сколько часов наполнит бассейн одна вторая труба, если первая труба наполняет его на 3 часа быстрее второй?

Бассейн наполняется двумя трубами за 6 2 / 3 часа , за сколько часов наполнит бассейн одна вторая труба, если первая труба наполняет его на 3 часа быстрее второй?

Бассейн наполняется двумя трубами за 12ч ?

Бассейн наполняется двумя трубами за 12ч .

Первая труба работая отдельно, может заполнить на 7ч быстрее второй.

За сколько часов наполнит бассейн первая труба?

На странице вопроса Через первую трубу можно наполнить бассейн на 5 часов быстрее, чем через вторую, а третья труба наполняет бассейн на 4 ч быстрее, чем первая? из категории Алгебра вы найдете ответ для уровня учащихся 5 — 9 классов. Если полученный ответ не устраивает и нужно расшить круг поиска, используйте удобную поисковую систему сайта. Можно также ознакомиться с похожими вопросами и ответами других пользователей в этой же категории или создать новый вопрос. Возможно, вам будет полезной информация, оставленная пользователями в комментариях, где можно обсудить тему с помощью обратной связи.

Пусть 2 катет будет равен — х см, 1 катет — х + 2 см. Х + (х + 2) = 10 х + х + 2 = 10 2х = 8 х = 4 см ( 2 катет ) 4 + 2 = 6 см ( 1 катет ).

㏒₂(х — 4 / (2х + 5)) 0 x>4 ; х> — 2, 5 x.

1. Переместительное свойство : a + b = b + a, a * b = b * a. 2. Сочетательное свойство : (a + b) + c = a + (b + c), (a * b) * c = a * (b * c) 3. Распределительное свойство : a * (b + c) = a * b + a * c.

1) — 4а(3а² — 5а — 2) = — 12а³ + 20а² + 8а.

Источник

Бассейн наполняется через первую трубу за 5 часов быстрее чем через вторую бассейн

Две трубы наполняют бассейн за 3 часа 36 минут, а одна первая труба наполняет бассейн за 6 часов. За сколько часов наполняет бассейн одна вторая труба?

Пусть объем бассейна равен 1. Обозначим и — скорости наполнения бассейна первой и второй трубой, соответственно. Две трубы наполняют бассейн за 3 часа 36 минут:

По условию задачи одна первая труба наполняет бассейн за 6 часов, то есть Таким образом,

Читайте также:  Беседки у пруда чайка

Тем самым, вторая труба за час наполняет 1/9 бассейна, значит, вторая труба наполняет этот бассейн за 9 часов.

Приведем другое решение.

Первая труба за час наполняет 1/6 бассейна, значит, за 3 ч 36 мин = 3,6 часа она заполнит 0,6 бассейна. Следовательно, вторая труба за 3,6 часа заполнит 0,4 бассейна. Поэтому весь бассейн она заполнит за время 3,6:0,4 = 9 часов.

Источник

Бассейн наполняется через первую трубу за 5 часов быстрее чем через вторую бассейн

Первая труба заполняет бассейн за 7 часов, а две трубы вместе — за 5 часов 50 минут. За сколько часов заполняет бассейн одна вторая труба?

Первая труба заполняет бассейн за 7 часов, две трубы вместе — за за 5 часов 50 минут то есть за 35/6 часа. Это значит, что за час первая труба заполняет 1/7 бассейна, а две трубы — 6/35 бассейна. При совместной работе производительности складываются, поэтому производительность второй трубы равна разности общей производительности и производительности первой трубы: бассейна в час. Тем самым, вторая труба заполняет бассейн за 35 часов.

То же самое решение составлением уравнения.

Поскольку первая труба заполняет бассейн за 7 часов, она заполняет одну седьмую бассейна в час. Пусть x — время, за которое вторая труба заполняет бассейн, в час она заполнит 1/х часть бассейна. Известно, что две трубы, работая одновременно, заполнили бассейн за 35/6 часа. Значит, в час они заполняли 6/35 бассейна. Тогда получаем:

Можно даже проще. Найдём время заполнения каждой трубы t, объём выполненной работы V и выполненную работу A (в нашем случае она будет равна 1, так как они заполнили 1 бассейн). Итак, время второй трубы обозначим за x, так как она нам не известна. А первая труба заполняет бассейн за 7 часов. Тогда объём работы 1 трубы будет равен 1/7. Аналогично 2 труба 1/х. Это мы нашли объём выполненной работы каждой трубой по отдельности. Нам известно что 2 трубы вместе выполнили данную работу за 5 часов 50 минут (то есть 5 целых 5/6). Тогда общий объём равен 6/35 (просто переведите 5 целых 5/6 в неправильную дробь и разделите 1 на на неё). Отсюда следует, что:

Источник

Оцените статью