- Бассейн наполнен двумя трубами действующими одновременно за 2 часа
- Если открыть одновременно две трубы, то бассейн будет наполнен водой за 2 часа 24 минуты, если сначала через первую трубу наполнить
- Бассейн наполнен двумя трубами действующими одновременно за 2 часа
- Бассейн наполнен двумя трубами действующими одновременно за 2 часа
Бассейн наполнен двумя трубами действующими одновременно за 2 часа
Бассейн наполняется двумя трубами,действующими одновременно,за 2 часа.За сколько часов может наполнить бассейн первая труба,если она,действуя одна,наполняет бассей на 3 часа быстрее,чем вторая?
Пусть х часов — время наполнения бассейна второй трубой, тогда (х-2) часа.
За каждый час: первая труба: 1/х часа (веся объем бассейна (1) делится на все время заполнения) и вторая: 1/(х-3).
Далее составляешь уравнение: 1/х+1/(х-3)=2
х=2,5 (часа) — наполнится бассейн
Ответ: x = -0.75 и x = 1
Объяснение:
Совокупность благоприятных для нас событий следующая: в первый раз выпало четное число (вероятность равна 0,5), а во второй раз выпало нечетное число (вероятность равна 0,5) или в первый раз выпало нечетное число (вероятность равна 0,5), а во второй раз выпало четное число (вероятность равна 0,5). Искомая вероятность равна 0,5*0,5+0,5*0,5=0,25+0,25=0,5.
Источник
Если открыть одновременно две трубы, то бассейн будет наполнен водой за 2 часа 24 минуты, если сначала через первую трубу наполнить
бассейна, а потом через вторую трубу оставшуюся часть, то весь бассейн будет наполнен за 6 часов. За сколько часов можно наполнить бассейн через каждую трубу отдельно?
Решение:
Обозначим объём бассейна за 1(единицу), а
— время наполнения первой трубой за (х)
— время наполнения второй трубой за (у)
Тогда:
— производительность наполнения первой трубой 1/х
— производительность наполнения второй трубой 1/у
Время наполнения бассейна обеими трубами составляет 2 24/60=2,4 час или:
1 : (1/х+1/у)=2,4
1 : (у+х)/ху=2,4
ху/(у+х)=2,4
ху=(у+х)*2,4
ху=2,4у+2,4х (1)
Время наполнения 1/3 бассейна составляет:
1/3 : 1/х=х/3
Время наполнения 2/3 бассейна составляет:
2/3 : 1/у=2у/3
Время наполнения таким образом составляет 6 часов или:
х/3+2у/3=6
(х+у)/3=6
х+у=3*6
х+у=18 (2)
Решим получившуюся систему уравнений (1) и (2):
ху=2,4у+2,4х
х+у=18
Из второго уравнения найдём значение (х) и подставим его в первое уравнение:
х=18-у
(18-у)*у=2,4у+2,4*(18-у)
18у-2у²=2,4у+43,2-4,8у
2у²-20,4+43,2=0 сократим на 2, получим:
у²-10,2+21,6=0
у1,2=(10,2+-D)/2*1
D=√(10²-4*1*21,6)=√( 104,04-86,4)=√17,64=4,2
у1,2=(10,2+-4,2)/2
у1=(10,2+4,2/2
у1=14,4/2
у1=7,2 — не соответствует условию задачи
у2=(10,2-4,2)/2
у2=6/2
у2=3 (час) — время наполнения бассейна второй трубой)
время наполнения бассейна первой трубой составляет:
18-2*3=12 час
Ответ: Время наполнения бассейна первой трубой-12 час;
Время наполнения бассейна второй трубой — 3 час
Источник
Бассейн наполнен двумя трубами действующими одновременно за 2 часа
Первая труба заполняет бассейн за 7 часов, а две трубы вместе — за 5 часов 50 минут. За сколько часов заполняет бассейн одна вторая труба?
Первая труба заполняет бассейн за 7 часов, две трубы вместе — за за 5 часов 50 минут то есть за 35/6 часа. Это значит, что за час первая труба заполняет 1/7 бассейна, а две трубы — 6/35 бассейна. При совместной работе производительности складываются, поэтому производительность второй трубы равна разности общей производительности и производительности первой трубы: бассейна в час. Тем самым, вторая труба заполняет бассейн за 35 часов.
То же самое решение составлением уравнения.
Поскольку первая труба заполняет бассейн за 7 часов, она заполняет одну седьмую бассейна в час. Пусть x — время, за которое вторая труба заполняет бассейн, в час она заполнит 1/х часть бассейна. Известно, что две трубы, работая одновременно, заполнили бассейн за 35/6 часа. Значит, в час они заполняли 6/35 бассейна. Тогда получаем:
Можно даже проще. Найдём время заполнения каждой трубы t, объём выполненной работы V и выполненную работу A (в нашем случае она будет равна 1, так как они заполнили 1 бассейн). Итак, время второй трубы обозначим за x, так как она нам не известна. А первая труба заполняет бассейн за 7 часов. Тогда объём работы 1 трубы будет равен 1/7. Аналогично 2 труба 1/х. Это мы нашли объём выполненной работы каждой трубой по отдельности. Нам известно что 2 трубы вместе выполнили данную работу за 5 часов 50 минут (то есть 5 целых 5/6). Тогда общий объём равен 6/35 (просто переведите 5 целых 5/6 в неправильную дробь и разделите 1 на на неё). Отсюда следует, что:
Источник
Бассейн наполнен двумя трубами действующими одновременно за 2 часа
Первая труба заполняет бассейн за 7 часов, а две трубы вместе — за 5 часов 50 минут. За сколько часов заполняет бассейн одна вторая труба?
Первая труба заполняет бассейн за 7 часов, две трубы вместе — за за 5 часов 50 минут то есть за 35/6 часа. Это значит, что за час первая труба заполняет 1/7 бассейна, а две трубы — 6/35 бассейна. При совместной работе производительности складываются, поэтому производительность второй трубы равна разности общей производительности и производительности первой трубы: бассейна в час. Тем самым, вторая труба заполняет бассейн за 35 часов.
То же самое решение составлением уравнения.
Поскольку первая труба заполняет бассейн за 7 часов, она заполняет одну седьмую бассейна в час. Пусть x — время, за которое вторая труба заполняет бассейн, в час она заполнит 1/х часть бассейна. Известно, что две трубы, работая одновременно, заполнили бассейн за 35/6 часа. Значит, в час они заполняли 6/35 бассейна. Тогда получаем:
Можно даже проще. Найдём время заполнения каждой трубы t, объём выполненной работы V и выполненную работу A (в нашем случае она будет равна 1, так как они заполнили 1 бассейн). Итак, время второй трубы обозначим за x, так как она нам не известна. А первая труба заполняет бассейн за 7 часов. Тогда объём работы 1 трубы будет равен 1/7. Аналогично 2 труба 1/х. Это мы нашли объём выполненной работы каждой трубой по отдельности. Нам известно что 2 трубы вместе выполнили данную работу за 5 часов 50 минут (то есть 5 целых 5/6). Тогда общий объём равен 6/35 (просто переведите 5 целых 5/6 в неправильную дробь и разделите 1 на на неё). Отсюда следует, что:
Источник